Skip to main content
Log in

Refinement of the composition and structure of YBaCo4−x Al x O7+δ crystals

  • Structure of Inorganic Compounds
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

YBa(Co4 − x Al x )O7 + δ (114Y) crystals have been grown in the Y-Ba-Co-O system by spontaneous crystallization from a slowly cooled nonstoichiometric melt. To change the oxygen content, the crystals were isothermally annealed in air in the range of 280–490°C. The crystals grown were characterized by scanning electron microscopy and powder X-ray diffraction. According to the data of an X-ray spectroscopic quantitative microprobe analysis, the average compositions of “as-grown” and oxygen-saturated crystals were Y1.04Ba1Co3.54Al0.50O7.8 and Y1.02Ba1Co3.55Al0.51O8.4, respectively. The refinement of the crystal structure after saturation on an automatic Bruker X8APEX diffractometer with a CCD detector (MoKα radiation, graphite monochromator, θmax = 32.54°, sp. gr. P63 mc, a = 6.2746(9), c = 10.257(3) Å, V = 349.71(13) Å3, Z = 2, d calcd = 5.220 g/cm3) reveals the location of Al in two independent positions of Co atoms and yields the general formula of the compound as YBaCo3.26Al0.74O7. Problems related to the difference in the compositions obtained by different methods are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Valdor and M. Andersson, Solid State Sci. 4, 923 (2002).

    Article  ADS  Google Scholar 

  2. M. Valdor, Solid State Sci. 6, 251 (2004).

    Article  ADS  Google Scholar 

  3. L. P. Kozeeva, M. Yu. Kameneva, A. Smolentsev, et al., Zh. Strukt. Khim. 49, 1108 (2008).

    Google Scholar 

  4. E. A. Juarez-Arellano, A. Friedrich, D. J. Wilson, et al., Phys. Rev. B 79, 064 109 (2009).

    Article  Google Scholar 

  5. G. L. Bychkov, S. V. Shiryaev, A. G. Soldatov, et al., Cryst. Res. Technol. 40, 395 (2005).

    Article  Google Scholar 

  6. M. Karpinen, H. Yamauchi, S. Otani, et al., Chem. Mater. 18, 490 (2006).

    Article  Google Scholar 

  7. V. I. Gatal’skaya, N. Dubrovskaya, P. Dube, et al., Fiz. Tverd. Tela 49, 1070 (2007).

    Google Scholar 

  8. A. Hug, J. F. Mitchell, H. Zheng, et al., J. Solid State Chem. 179, 1136 (2006).

    Article  ADS  Google Scholar 

  9. M. Valdor, Solid State Sci. 8, 1272 (2006).

    Article  ADS  Google Scholar 

  10. O. Chmaissem, H. Zheng, A. Hug, et al., J. Solid State Chem. 181, 664 (2008).

    Article  ADS  Google Scholar 

  11. D. V. Sheptyakov, A. Podlesnyak, S. V. Shiryaev, et al., PSI Sci. Rep. III, 64 (2001).

    Google Scholar 

  12. G. L. Bychkov, S. V. Shiryaev, D. D. Khalyavin, et al., Poverkhnost’: Rentgen., Sinkhrotron. Neitr. Issled., No. 9, 8 (2004).

  13. G. L. Bychkov, S. N. Barilo, S. V. Shiryaev, et al., J. Cryst. Growth 275, e813 (2005).

    Article  ADS  Google Scholar 

  14. S. N. Barilo, S. V. Shiryaev, G. L. Bychkov, et al., J. Cryst. Growth 275, 120 (2005).

    Article  ADS  Google Scholar 

  15. M. Valldor, N. Hollmann, J. Hemberger, and J. A. Mydosh, Phys. Rev. B 78, 024 408 (2008).

    Article  Google Scholar 

  16. S. Kadota, M. Karppinen, T. Motohashi, and H. Yamauchi, Chem. Mater. 20, 6378 (2008).

    Article  Google Scholar 

  17. T. Motohashi, S. Kadota, H. Fjellvag, et al., Mater. Sci. Eng. B 148, 196 (2008).

    Article  Google Scholar 

  18. E. V. Tsipis, J. C. Waerenborgh, M. Avdeev, and V. V. Kharton, J. Solid State Chem. 182, 640 (2009).

    Article  ADS  Google Scholar 

  19. P. Manuel, L. C. Chapon, P. G. Radaelli, et al., Phys. Rev. Lett. 103, 037 202 (2009).

    Article  Google Scholar 

  20. L. Pauling, H. P. Klug, and A. N. Winchell, Am. Mineral. 20, 492 (1935).

    Google Scholar 

  21. G. Aminoff, Kunglia Svenska Vetenskaps Akademiens Handlingar 11, 1 (1933).

    Google Scholar 

  22. D. M. C. Huminicki and F. C. Hawthorne, Can. Mineral. 39, 153 (2001).

    Article  Google Scholar 

  23. C. Rabbow and H. Muller-Buschbaum, Z. Anorg. Allg. Chem. 620, 527 (1994).

    Article  Google Scholar 

  24. H. Muller-Buschbaum and C. Rabbow, Z. Naturforsch. B: Anorg. Chem., Organ. Chem. 51, 343 (1996).

    Google Scholar 

  25. A. A. Taskin, A. N. Lavrov, and Y. Ando, Phys. Rev. B 71, 134 414 (2005).

    Article  Google Scholar 

  26. A. V. Alekseev and S. A. Gromilov, Zh. Strukt. Khim. 51(4), 772 (2010).

    Google Scholar 

  27. APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 6.12). Bruker Advanced X-ray Solutions (Bruker AXS., Madison, Wisc., 2004).

  28. G. M. Sheldrick, SHELX97 Release 97-2 (Univ. of Göttingen, Göttingen, 1998).

    Google Scholar 

  29. Internatioanl Tables for Crystallography. D. Reidel Publishing Company, Dordrecht: Holland/Boston: USA. 1983. V. A. 854 p.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Podberezskaya.

Additional information

Original Russian Text © N.V. Podberezskaya, L.P. Kozeeva, M.Yu. Kameneva, A.I. Smolentsev, A.V. Alekseev, A.N. Lavrov, 2011, published in Kristallografiya, 2011, Vol. 56, No. 3, pp. 459–469.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podberezskaya, N.V., Kozeeva, L.P., Kameneva, M.Y. et al. Refinement of the composition and structure of YBaCo4−x Al x O7+δ crystals. Crystallogr. Rep. 56, 425–434 (2011). https://doi.org/10.1134/S1063774511030230

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774511030230

Keywords

Navigation