Skip to main content
Log in

Charge separation at evaporation and vapor growth of ice and water

  • Crystal Growth
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A mathematical model of the interface charging at evaporation and growth of ice and water phases from vapor is proposed. This model takes into account the competition between the two mechanisms of charge separation, one of which is based on protons and the other involves orientational defects. The first mechanism leads to the accumulation of a positive charge by ice and water during evaporation, while the second one provides negative charge accumulation. The protonic mechanism dominates at low velocities of the evaporation front with respect to the condensed phase material (lower than 10−11–10−9 m/s). At high rates, the mechanism based on orientational defects is dominant. When vapor is condensed, and, correspondingly, the ice and water phases grow, the charge polarity is opposite to the polarity in the case of evaporation. The proposed model adequately describes the experimentally observed interface electric current and the signs of phase charges during evaporation and condensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Cavallo, Trattato completo d’lettricita teorica e pratica con sperimenti originali del Signore Tiberio Cavallo. Tradotto in italiano dall’originale inglese. Con addizioni e cangiamenti fatti dall’autore (Gaetano Cambiagi, Firenze, 1779), p. 8.

    Google Scholar 

  2. B. Khasanov and Ya. Shneĭberg, Connect! Mir Svyazi, No. 9, 25 (2001).

  3. W. Findeisen, Meteorol. Z, No. 6, 201 (1940).

  4. T. Takahashi, J. Atmos. Sci., 30, 1220 (1973).

    Article  ADS  Google Scholar 

  5. B. Baker, M. B. Baker, E. R. Jayarante, et al., Q.J.R. Meteorol. Soc. 113, 1193 (1987).

    Article  ADS  Google Scholar 

  6. Y. Dong and J. Hallett, J. Geophys. Res. D 97(18), 20361 (1992).

    ADS  Google Scholar 

  7. Ya. I. Frenkel’, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 8, 244 (1944).

    Google Scholar 

  8. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskiĭ, et al., in Physical Values: A Handbook, Ed. by I. S. Grigor’ev and E. Z. Meĭlikhov (Energoatomizdat, Moscow, 1991).

    Google Scholar 

  9. N. Maeno, The Sciency of Ice (Hokkaido Univ. Press, Sapporo, 1984; Mir, Moscow, 1988).

    Google Scholar 

  10. A. V. Shavlov, Ice in Structural Transformations (Nauka, Novosibirsk, 1996) [in Russian].

    Google Scholar 

  11. A. V. Shavlov, Kristallografiya 50(5), 947 (2005).

    Google Scholar 

  12. B. Yudaev, Technical Thermodynamics: Heat Transfer (Vysshaya shkola, Moscow, 1988) [in Russian].

    Google Scholar 

  13. F. Crate and W. Black, Fundamentals of Heat Transfer (Mir, Moscow, 1983) [in Russian].

    Google Scholar 

  14. S. M. Shmeter, Physics of Condensed Clouds (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  15. M. Ya. Balbachan, Dokl. Akad. Nauk SSSR 316(6), 1358 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shavlov.

Additional information

Original Russian Text © A.V. Shavlov, 2008, published in Kristallografiya, 2008, Vol. 53, No. 6, pp. 1138–1144.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shavlov, A.V. Charge separation at evaporation and vapor growth of ice and water. Crystallogr. Rep. 53, 1080–1086 (2008). https://doi.org/10.1134/S1063774508060254

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774508060254

PACS numbers

Navigation