Skip to main content
Log in

Zinc oxide hollow microstructures and nanostructures formed under hydrothermal conditions

  • Crystal Growth
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Zinc oxide low-dimensional hollow structures in the form of hexagonal plates with holes at the center of the {0001} facets are synthesized in the course of the low-temperature interaction of ZnO precursors with aqueous solutions of potassium fluoride under hydrothermal conditions. Crystals have the shape of single-walled or multiwalled “nuts.” The high optical quality of the structures is confirmed by cathodoluminescence data at room temperature. The mechanism of the formation of ZnO “nanonuts” and products of the interaction of the ZnO precursors with KF is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature (London) 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. H. P. Liang, L. J. Wan, C. L. Bai, and L. Jiang, J. Phys. Chem. B 109(16), 7795 (2005).

    Article  Google Scholar 

  3. Y. Zhang, S. Wang, X. Wang, et al., J. Nanosci. Nanotechnol. 6(5), 1423 (2006).

    Article  Google Scholar 

  4. L. Shi, Y. M. Xu, and Q. Li, J. Nanosci. Nanotechnol. 6(1), 185 (2006).

    Google Scholar 

  5. A. Ghicov, J. M. Macak, H. Tsuchiya, et al., Nano Lett. 6(5), 1080 (2006).

    Article  Google Scholar 

  6. G. Xi, Y. Peng, L. Xu, et al., Inorg. Chem. Commun. 7(5), 607 (2004).

    Article  Google Scholar 

  7. Y. Wu, Z. Xi, G. Zhang, et al., J. Cryst. Growth 292, 143 (2006).

    Article  ADS  Google Scholar 

  8. G. Zhang, C. Li, C. Fangyi, and J. Chen, Sens. Actuators, B 120(2), 403 (2007).

    Article  Google Scholar 

  9. Y. J. Li, M. Y. Lu, C. W. Wang, et al., Appl. Phys. Lett. 88, 143102 (2006).

  10. H. Zhu, K. Yao, H. Zhang, and D. Yang, J. Phys. Chem. B 109(44), 20676 (2005).

  11. P. Zhao, J. Wang, G. Cheng, and K. Huang, J. Phys. Chem. B 110(45), 22400 (2006).

  12. Z. Hu, L. Li, X. Zhou, et al., J. Colloid Interface Sci. 294(2), 328 (2006).

    Article  Google Scholar 

  13. H. Song, D. Wang, X. Ma, et al., Solid State Commun. 139(8), 430 (2006).

    Article  ADS  Google Scholar 

  14. Z. Y. Wang, X. S. Fang, Q. F. Lu, et al., Appl. Phys. Lett. 88, 083102 (2006).

  15. Y. Cheng, Y. Wang, C. Jia, and F. Bao, J. Phys. Chem. B 110(48), 24399 (2006).

  16. X.-P. Shen, G. Yin, W.-L. Zhan, and Z. Xu, Solid State Commun. 140(3–4), 116 (2006).

    Article  ADS  Google Scholar 

  17. W.-S. Wang, L. Zhen, C.-Y. Xu, et al., J. Phys. Chem. B 110(46), 23154 (2006).

  18. C. Yan and D. Xue, J. Phys. Chem. B 110(23), 11076 (2006).

  19. P. X. Gao and Z. L. Wang, J. Am. Chem. Soc. 125(37), 11299 (2003).

    Google Scholar 

  20. H. J. Fan, R. Scholz, F. M. Kolb, et al., Solid State Commun. 130(8), 517 (2004).

    Article  ADS  Google Scholar 

  21. A. Umar, S. H. Kim, Y. H. Im, and Y. B. Hahn, Superlattices Microstruct. 39(1–4), 238 (2006).

    Article  ADS  Google Scholar 

  22. J. Duan, X. Huang, E. Wang, and H. Ai, Nanotechnology 17, 1786 (2006).

    Article  ADS  Google Scholar 

  23. G. Shen, Y. Bando, and C.-J. Lee, J. Phys. Chem. B 109(21), 10578 (2005).

  24. Z. L. Wang, Appl. Phys. A: Mater. Sci. Process. 88(1), 7 (2007).

    Article  ADS  Google Scholar 

  25. R.-C. Wang, C.-P. Liu, J.-L. Huang, and S.-J. Chen, Nanotechnology 17, 753 (2006).

    Article  ADS  Google Scholar 

  26. G. Shen, Y. Bando, and C.-J. Lee, J. Phys. Chem. B 109(21), 10578 (2005).

  27. Q. P. Ding, Q. Q. Cao, H. B. Huang, et al., J. Phys. D: Appl. Phys. 39, 46 (2006).

    Article  ADS  Google Scholar 

  28. D. Wu, L. Huang, Q. Wang, et al., Mater. Chem. Phys. 96(1), 51 (2006).

    Article  Google Scholar 

  29. A. Yang and Z. Cui, Mater. Lett. 60(19), 2403 (2006).

    Article  Google Scholar 

  30. A. Wei, X. W. Sun, C. X. Xu, et al., Nanotechnology 17, 1740 (2006).

    Article  ADS  Google Scholar 

  31. Y. S. Han, L. W. Lin, M. Fuji, and M. Takahashi, Chem. Lett. 36(8), 1002 (2007).

    Article  Google Scholar 

  32. J. Zhang, L. Sun, C. Liao, and C. Yan, Chem. Commun. (Cambridge, UK), No. 3, 262 (2002).

  33. J. Liu and X. Huang, J. Solid State Chem. 179(3), 843 (2006).

    Article  ADS  Google Scholar 

  34. A. Eftekhari, F. Molaei, and H. Arami, Mater. Sci. Eng., A 437(2), 446 (2006).

    Article  Google Scholar 

  35. M. Yang, G. Pang, L. Jiang, and S. Feng, Nanotechnology 17, 206 (2006).

    Article  ADS  Google Scholar 

  36. H. Hou, Y. Xie, and Q. Li, Solid State Sci. 7(1), 45 (2005).

    Article  Google Scholar 

  37. A. Yang and Z. Cui, Mater. Lett. 60(19), 2403 (2006).

    Article  Google Scholar 

  38. Y. Sun, D. J. Riley, and M. N. Ashfold, J. Phys. Chem. B: Condens. Matter Mater. Surf. Interfaces Biophys. 110(31), 15186 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Dem’yanets.

Additional information

Original Russian Text © L.N. Dem’yanets, V.V. Artemov, L.E. Li, Yu.M. Mininzon, T.G. Uvarova, 2008, published in Kristallografiya, 2008, Vol. 53, No. 5, pp. 937–942.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dem’yanets, L.N., Artemov, V.V., Li, L.E. et al. Zinc oxide hollow microstructures and nanostructures formed under hydrothermal conditions. Crystallogr. Rep. 53, 888–893 (2008). https://doi.org/10.1134/S1063774508050258

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774508050258

PACS numbers

Navigation