Skip to main content
Log in

Pyroelectric properties of real LiNbO3 single crystals grown from a congruent melt

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The temperature dependences of the pyroelectric coefficient of lithium niobate single crystals grown from a congruent melt have been investigated in the range of 4.2–300 K. No anomalies were found at low temperatures, and the experimental dependence is described well by the Debye-Einstein model, with T D = 357 K and two pyroactive frequencies of 692 and 869 cm−1. Specific features of lithium niobate have been analyzed. Two sublattices, formed by two pairs of mesotetrahedra with (according to the symmetry conditions) dipole and octupole moments, were selected in the structure. Their contributions to the total polarization differ by an order of magnitude. Vacuum annealing of the samples leads to the occurrence of anomalies only at temperatures over 280 K; these anomalities are interpreted as a manifestation of superionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Gavrilova, E. G. Maksimov, V. K. Novik, and S. I. Drozhdin, Fiz. Tverd. Tela (Leningrad) 27(9), 2597 (1985) [Sov. Phys. Solid State 27, 1559 (1985)].

    Google Scholar 

  2. I. K. Novik and N. D. Gavrilova, Fiz. Tverd. Tela (St. Petersburg) 42(6), 961 (2000) [Phys. Solid State 42, 991 (2000)].

    Google Scholar 

  3. G. Heiland and H. Ibach, Solid State Commun. 4(3), 353 (1966).

    Article  ADS  Google Scholar 

  4. I. Born and E. Huang, Dinamical Theory of Crystal Lattices (Clarendon, Oxford, 1954).

    Google Scholar 

  5. J. Mangin and A. Hadni, Phys. Rev. B: Condens. Matter Mater. Phys. 27, 7730 (1983).

    ADS  Google Scholar 

  6. Yu. V. Shaldin, A. A. Bush, S. Matyjasik, and M. Kh. Rabadanov, Kristallografiya 50(5), 884 (2005) [Crystallogr. Rep. 50, 836 (2005)].

    Google Scholar 

  7. Yu. V. Shaldin, R. Popravskiĭ, S. Matyjasik, et al., Fiz. Tverd. Tela (St. Petersburg) 34(4), 1160 (1995) [Phys. Solid State 34, 630 (1995)].

    Google Scholar 

  8. Yu. V. Shaldin, S. Matyjasik, M. Kh. Rabadanov, et al., Fiz. Tverd. Tela (St. Petersburg) 48(5), 858 (2006) [Phys. Solid State 48, 912 (2006)].

    Google Scholar 

  9. S. Erdei and V. T. Gabrieljan, J. Cryst. Technol. 24(10), 987 (1989).

    Article  Google Scholar 

  10. R. N. Balasanyan, V. T. Gabriélyan, and A. T. Kokanyan, Kristallografiya 35(6), 1545 (1990) [Sov. Phys. Crystallogr. 35, 910 (1990)].

    Google Scholar 

  11. M. E. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977; Mir, Moscow, 1981).

    Google Scholar 

  12. S. C. Abrahams and P. Marsh, Acta Crystallogr., Sect. B: Struct. Sci. 42, 61 (1986).

    Article  Google Scholar 

  13. G. E. Peterson and J. R. Carruther, J. Solid State Chem. 1, 98 (1969).

    Article  ADS  Google Scholar 

  14. S. Vieera, Appl. Phys. Lett. 38(6), 472 (1981).

    Article  ADS  Google Scholar 

  15. A. M. Glass and M. E. Lines, Phys. Rev. B: Solid State 13(1), 180 (1976).

    ADS  Google Scholar 

  16. N. D. Gavrilova, E. G. Maksimov, V. K. Novik, and S. N. Drozhdin, Ferroelectrics 100, 223 (1989).

    Google Scholar 

  17. N. D. Gavrilova, S. N. Drozhdin, V. K. Novik, and E. G. Maksimov, Solid State Commun. 48(2), 12 (1983).

    Article  Google Scholar 

  18. S. Bredikhin, S. Schamer, M. Klinger, et al., J. Appl. Phys. 88(10), 5687 (2000).

    Article  ADS  Google Scholar 

  19. J. A. Schouten, Tensor Analysis for Physicists (Clarendon, Oxford, 1951).

    MATH  Google Scholar 

  20. Yu. V. Shaldin, Fiz. Tverd. Tela (Leningrad) 19(5), 1580 (1977) [Sov. Phys. Solid State 19, 922 (1977)].

    Google Scholar 

  21. Yu. I. Sirotin and M. P. Shaskol’skaya, Fundamentals of Crystallography (Nauka, Moscow, 1979) [in Russian].

    Google Scholar 

  22. Yu. V. Shaldin, Kristallografiya 47(3), 531 (2002) [Crystallogr. Rep. 47, 484 (2002)].

    Google Scholar 

  23. W. D. Johnston and I. P. Kaminow, Phys. Rev. 168, 1045 (1968).

    Article  ADS  Google Scholar 

  24. W. D. Johnston and I. P. Kaminow, Phys. Rev. B: Solid State 2, 4233 (1970).

    Google Scholar 

  25. W. N. Lawless, Phys. Rev. Lett. 36(5), 478 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  26. V. V. Zhdanova, V. P. Klyuev, V. V. Lemanov, et al., Fiz. Tverd. Tela (Leningrad) 10(6), 1725 (1968) [Sov. Phys. Solid State 10, 1360 (1968)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Shaldin.

Additional information

Original Russian Text © Yu.V. Shaldin, V.T. Gabriélyan, S. Matyjasik, 2008, published in Kristallografiya, 2008, Vol. 53, No. 5, pp. 896–902.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaldin, Y.V., Gabriélyan, V.T. & Matyjasik, S. Pyroelectric properties of real LiNbO3 single crystals grown from a congruent melt. Crystallogr. Rep. 53, 847–852 (2008). https://doi.org/10.1134/S1063774508050209

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774508050209

PACS numbers

Navigation