Skip to main content
Log in

On the driving forces in the type-II enzymes—Restriction molecular motors

  • Nanomaterials
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The motion of the type-II enzyme-DNA complex along the DNA chain is described in the framework of the model of chiral kink movement under the action of a transverse electric field of moderate strength and the model of proper kinetic equations. The basic enzyme characteristics are estimated. The energy released during catalytic reactions due to the participation of certain metal-ions is used to produce bending and twisting of the DNA, the angular motion, and the linear movement of the enzyme along the DNA chain. When water molecules and ions are expelled from the protein-DNA interface, a large longitudinal force appears in the motor, which strives to turn the deformed part of the DNA chain around the transverse axis, which can scissor the DNA chain in some “weak” place inside the enzyme groove.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yuan, Biochem. Rev. 50, 285 (1981).

    Article  Google Scholar 

  2. A. Pingoud and A. Jeltsch, Eur. J. Biochem. 246, 1 (1997).

    Article  Google Scholar 

  3. N. Y. Sidorova, Proc. Natl. Acad. Sci. USA 93, 12 272 (1996).

    Article  Google Scholar 

  4. D. Kostrewa and F. K. Winkler, Biochemistry 34, 683 (1995).

    Article  Google Scholar 

  5. M. Newman, T. Strzelecka, L. F. Dorner, et al., Science (Washington) 269, 656 (1995).

    Article  ADS  Google Scholar 

  6. J. F. Thompson and A. Landy, Nucleic Acids Res. 16, 9687 (1988).

    Article  Google Scholar 

  7. M. T. Record, C. F. Anderson, and T. M. Lohman, Q. Rev. Biophys. 11, 103 (1978).

    Article  Google Scholar 

  8. A. Jeltsch, H. Wolfes, G. Maass, and A. Pingoud, Proc. Natl. Acad. Sci. USA 90, 8499 (1996).

    Article  ADS  Google Scholar 

  9. S. Pikin and W. Haase, Zh. Éksp. Teor. Fiz. 119(1), 199 (2001) [JETP 92 (1), 174 (2001)].

    Google Scholar 

  10. S. A. Pikin, Structural Transformations in Liquid Crystals (Gordon and Breach, New York, 1991); V. L. Indenbom, S. A. Pikin, and E. B. Loginov, Kristallografiya 21 (6), 1093 (1976) [Sov. Phys. Crystallogr. 21 (6), 632 (1976)].

    Google Scholar 

  11. E. Demikhov, S. A. Pikin, and E. S. Pikina, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 52, 6250 (1995).

    Google Scholar 

  12. H.-J. Ehbrecht, A. Pingoud, C. Urbanke, et al., J. Biol. Chem. 260, 6160 (1985).

    Google Scholar 

  13. E. B. Loginov and S. A. Pikin, Kristallografiya 51(2), 335 (2006) [Crystallogr. Rep. 51 (2), 308 (2006)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Pikin.

Additional information

Published in Russian in Kristallografiya, 2007, Vol. 52, No. 6, pp. 1131–1136.

The text was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pikin, S.A. On the driving forces in the type-II enzymes—Restriction molecular motors. Crystallogr. Rep. 52, 1094–1099 (2007). https://doi.org/10.1134/S1063774507060260

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774507060260

PACS numbers

Navigation