Skip to main content
Log in

Influence of cluster defects of variable composition on the optical and radiative characteristics of oxide crystals

  • Physical Properties of Crystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

It is shown that oxide crystals contain cluster defects of variable composition, which cause absorption of light in the transparency region of crystals. The model based on the presence of cluster defects in oxide crystals explains well the experimental data on the thermal and radiative coloring of these crystals. It is noted that cluster defects accumulate oxygen in oxide crystals. These defects are responsible also for the photochromic effect in them. Application of the noted model made it possible to fabricate lead tungstate scintillators at North Crystals Company for the ALICE project (CERN) with almost 100% reproducibility of their operating characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Men’, Yu. P. Vorob’ev, and G. I. Chufarov, Physicochemical Properties of Nonstoichiometric Oxides (Nauka, Leningrad, 1973) [in Russian].

    Google Scholar 

  2. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972; Mir, Moscow, 1975).

    Google Scholar 

  3. S. Burachas, S. Beloglovski, I. Makov, et al., J. Crystal Growth 243, 367 (2002).

    Article  Google Scholar 

  4. S. Burachas, S. Beloglovski, I. Makov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 505, 656 (2003).

    Article  ADS  Google Scholar 

  5. S. Burachas, S. Beloglovski, D. Elizarov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 537, 185 (2005).

    Article  ADS  Google Scholar 

  6. S. Burachas, S. Beloglovski, Yu. Saveliev, et al., Funct. Mater. 12, 287 (2005).

    Google Scholar 

  7. S. Burachas, Yu. Saveliev, M. Ippolitov, et al., J. Cryst. Growth, 293, 62 (2006).

    Article  Google Scholar 

  8. S. F. Burachas, S. Ya. Beloglovski, N. A. Vassilieva, et al., Crystallography Reports 50(Suppl. 1), 111 (2005).

    Article  Google Scholar 

  9. Yu. S. Kuz’minov, Kristallografiya 39(3), 530 (1994) [Crystallogr. Rep. 39, 471 (1994)].

    Google Scholar 

  10. R. P. Elliot, ASM Trans. Q. 52, 990 (1959).

    Google Scholar 

  11. H. J. Galdschmidt, J. Inst. Met. 87, 235 (1959).

    Google Scholar 

  12. K. Naito and T. Matsui, Solid State Ionics 12, 125 (1984).

    Article  Google Scholar 

  13. N. A. Kulagin, Fiz. Tverd. Tela (Leningrad) 25(11), 3392 (1983) [Sov. Phys. Solid State 25, 1952 (1983)].

    Google Scholar 

  14. A. F. Konstantinova, L. A. Korostel’, and N. A. Kulagin, Kristallografiya 40(4), 692 (1995) [Crystallogr. Rep. 40, 640 (1995)].

    Google Scholar 

  15. A. F. Konstantinova, L. A. Korostel’, and S. N. Sul’yanov, Kristallografiya 43(5), 903 (1998) [Crystallogr. Rep. 43, 849 (1998)].

    Google Scholar 

  16. A. F. Konstantinova, G. N. Gorbenko, L. A. Korostel’, and N. A. Kulagin, Kristallografiya 41(2), 320 (1996) [Crystallogr. Rep. 41, 302 (1996)].

    Google Scholar 

  17. Kh. S. Bagdasarov, Mater. Élektron. Tekh., No. 1, 4 (2004).

  18. Yu. S. Kuz’minov, Kristallografiya 51(3), 533 (2006) [Crystallogr. Rep. 51, 500 (2006)].

    MathSciNet  Google Scholar 

  19. A. Annenkov, E. Auffrray, M. Korzhik, et al., Phys. Status Solidi A 170, 47 (1998).

    Article  ADS  Google Scholar 

  20. V. Laguta, J. Roza, Zaritskii, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 71, 235 108 (2005).

  21. M. Nikl, Phys. Status Solidi A 178, 595 (2000).

    Article  ADS  Google Scholar 

  22. Gmelin Handbuch der Anorganische Chemie, System No. 54, Wolfram B2 (Springer-Verlag, Berlin, 1997).

  23. L. S. Goreshchenko, Chemistry of Titanium (Naukova Dumka, Kiev, 1970) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Burachas.

Additional information

Original Russian Text © S.F. Burachas, A.A. Vasil’ev, M.S. Ippolitov, V.I. Man’ko, Yu.A. Savel’ev, G. Tamulaitis, 2007, published in Kristallografiya, 2007, Vol. 52, No. 6, pp. 1124–1130.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burachas, S.F., Vasil’ev, A.A., Ippolitov, M.S. et al. Influence of cluster defects of variable composition on the optical and radiative characteristics of oxide crystals. Crystallogr. Rep. 52, 1088–1093 (2007). https://doi.org/10.1134/S1063774507060259

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774507060259

PACS numbers

Navigation