Skip to main content
Log in

Charge state and hydrogen diffusion in Ti-based alloys

  • Quasicrystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The electronic structure, charge state, and hydrogen diffusion in icosahedral Ti-based alloys have been investigated by the methods based on the density-functional theory. The charge state of the hydrogen atom in Ti36Zr32Ni13 has been determined for different types of tetrahedral voids. The charge state of hydrogen atoms in Ti36Zr32Ni13, Ti36Hf32Ni13, and Ti48Zr8Fe18 is calculated for the ratio H/M = 1.7, where H is the number of hydrogen atoms and M is the number of metal atoms. It is established that hydrogen atoms in all objects studied are in an almost neutral state. The hydrogen diffusion coefficient is determined for Ti36Zr32Ni13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Kim, P. C. Gibbons, and K. F. Kelton, Philos. Mag. Lett. 76, 199 (1997).

    Article  Google Scholar 

  2. W. J. Kim, P. C. Gibbons, K. F. Kelton, and W. B. Yelon, Phys. Rev. B: Condens. Matter Mater. Phys. 58, 2578 (1998).

    ADS  Google Scholar 

  3. R. G. Hennig, K. F. Kelton, A. E. Carlsson, and C. L. Henley, Phys. Rev. B: Condens. Matter Mater. Phys. 67, 134 202 (2003).

    Google Scholar 

  4. R. M. Stroud, A. M. Viano, P. C. Gibbons, et al., Appl. Phys. Lett. 69, 2998 (1996).

    Article  ADS  Google Scholar 

  5. K. F. Kelton, W. J. Kim, and R. M. Stroud, Appl. Phys. Lett. 70, 3230 (1997).

    Article  ADS  Google Scholar 

  6. P. C. Gibbons and K. F. Kelton, Physical Properties of Quasicrystals, Ed. by Z. M. Stadnik (Springer-Verlag, Berlin, 1999), p. 403.

    Google Scholar 

  7. K. F. Kelton and P. C. Gibbons, MRS Bull. 22, 69 (1997).

    Google Scholar 

  8. R. G. Henning, A. E. Carlsson, K. F. Kelton, and C. L. Henley, Phys. Rev. B: Condens. Matter Mater. Phys. 71, 144 103 (2005).

    Google Scholar 

  9. E. Belin-Ferre, R. G. Henning, Z. Dankhazi, et al., J. Alloys Compd. 342, 337 (2002).

    Article  Google Scholar 

  10. M.-H. Kang and J. W. Wilkins, Phys. Rev. B: Condens. Matter Mater. Phys. 41, 10 182 (1990).

    Google Scholar 

  11. A. Sadoc, J. P. Itié, A. Polian, et al., J. Phys.: Condens. Matter 13, 8527 (2001).

    Article  ADS  Google Scholar 

  12. A. Sadoc, E. H. Majzoub, V. T. Huett, and K. F. Kelton, J. Phys.: Condens. Matter 14, 6413 (2002).

    Article  ADS  Google Scholar 

  13. A. Sadoc, E. H. Majzoub, V. T. Huett, and K. F. Kelton, J. Phys.: Condens. Matter 15, 7469 (2003).

    Article  ADS  Google Scholar 

  14. A. Sadoc, E. H. Majzoub, V. T. Huett, and K. F. Kelton, J. Phys.: Condens. Matter 17, 1481 (2005).

    Article  ADS  Google Scholar 

  15. R. Nicula, A. Jianu, U. Ponkratz, and E. Burkel, Phys. Rev. B: Condens. Matter Mater. Phys. 62, 8844 (2000).

    ADS  Google Scholar 

  16. A. Shastri, E. H. Majzoub, F. Borsa, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 57, 5148 (1998).

    ADS  Google Scholar 

  17. K. R. Faust, D. W. Pfitsch, N. A. Stojanovich, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 62, 11 444 (2000).

    Google Scholar 

  18. A. F. McDowell, N. L. Adolphi, and C. A. Sholl, J. Phys.: Condens. Matter 13, 9799 (2001).

    Article  ADS  Google Scholar 

  19. V. Azhazha, A. Grib, G. Khadzhay, et al., J. Phys.: Condens. Matter 15, 5001 (2003).

    Article  ADS  Google Scholar 

  20. A. Yu. Morozov, É. I. Isaev, and Yu. Kh. Vekilov, Fiz. Tverd. Tela (St. Petersburg) 48, 9 (2006).

    Google Scholar 

  21. G. Kresse and J. Hafner, Phys. Rev. B: Condens. Matter Mater. Phys. 47, 558 (1993).

    ADS  Google Scholar 

  22. G. Kresse and J. Furthmuller, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11 169 (1996).

    Google Scholar 

  23. P. E. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys. 50, 17 953 (1994).

    Google Scholar 

  24. J. P. Perdew and Y. Wang, Phys. Rev. Lett. 46, 6671 (1992).

    ADS  Google Scholar 

  25. R. Car and M. Parinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  ADS  Google Scholar 

  26. CPMD, Copyright IBM Corp. 1990–2001; Copyright MPI für Festkörperforschung Stuttgart 1997–2004; http://www.cpmd.org for more details.

  27. S. Goedecker, J. Hutter, and M. Teter, Phys. Rev. B: Condens. Matter Mater. Phys. 54, 1703 (1996).

    ADS  Google Scholar 

  28. A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys. 38, 3098 (1988).

    ADS  Google Scholar 

  29. F. L. Hirshfeld, Theor. Chem. Acta 44, 129 (1977).

    Article  Google Scholar 

  30. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).

    Article  ADS  Google Scholar 

  31. E. H. Sevilla and R. M. Cotts, Phys. Rev. B: Condens. Matter Mater. Phys. 37, 6813 (1993).

    ADS  Google Scholar 

  32. M. A. Chernikov, in Proceedings of the All-Russia Conference on Quasicrystals (RNTs “Kurchatovskiĭ Institut,” Moscow, 2003) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Isaev.

Additional information

Original Russian Text © A.Yu. Morozov, E.I. Isaev, Yu.Kh. Vekilov, 2007, published in Kristallografiya, 2007, Vol. 52, No. 6, pp. 1011–1015.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, A.Y., Isaev, E.I. & Vekilov, Y.K. Charge state and hydrogen diffusion in Ti-based alloys. Crystallogr. Rep. 52, 975–979 (2007). https://doi.org/10.1134/S1063774507060077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774507060077

PACS numbers

Navigation