Skip to main content
Log in

Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing

  • Quasicrystals
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Modern methods for determining the hardness, Young’s modulus, elastic recovery, adhesive/cohesive strength, friction coefficient, and wear resistance of thin films, coatings, multilayer materials, and bulk materials are considered. The experimental data obtained in instrumented indentation, instrumented scratching, and tribological tests of nanostructured and quasicrystalline coatings and composite materials are analyzed. It is noted that the elastic recovery of a number of advanced materials is higher than the elastic recovery of metal alloys by a factor of 2–3. The coefficients of sliding friction of sintered samples and thin films containing Al-Cu-Fe quasicrystals are found to be relatively low. An increase in the fraction of quasicrystalline particles to 30% in composites with an aluminum matrix leads to an increase in the wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Voevodin, D. V. Shtansky, E. A. Levashov, and J. J. Moore, NATO Sci. Ser., II 155, 319 (2004).

    Article  Google Scholar 

  2. http://www.shs.misi.ru.

  3. H. R. Hertz, Z. Reine Angew. Math., No. 92, 156 (1882).

  4. L. Landau and E. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford, 1986).

    Google Scholar 

  5. J. Musil, H. Zeman, F. Kunc, and J. Vlček, Mater. Sci. Eng., A 340, 281 (2002).

    Google Scholar 

  6. S. Veprek, S. Mukherjee, H.-D. Mannling, and J. L. He, Mater. Sci. Eng., A 340, 292 (2002).

    Google Scholar 

  7. V. S. Zolotarevskiĭ, Mechanical Properties of Metals (MISiS, Moscow, 1998) [in Russian].

    Google Scholar 

  8. http://www.csm-instruments.com.

  9. G. M. Gamilton, Proc. Inst. Mech. Eng., Part C 197, 53 (1983).

    Google Scholar 

  10. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  ADS  Google Scholar 

  11. S. I. Bulychev and V. P. Alekhin, Testing Materials under Continuous Indentation (Mashinostroenie, Moscow, 1990) [in Russian].

    Google Scholar 

  12. G. M. Pharr, Mater. Sci. Eng., A 253, 151 (1998).

    Google Scholar 

  13. M. I. Petrzhik, M. R. Filonov, K. A. Pecherkin, et al., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., No. 6, 62 (2005).

  14. M. I. Petrzhik, D. V. Shtanskiĭ, and E. A. Levashov, in Proceedings of the X International Scientific and Engineering Conference “High Technologies in the Industry of Russia,” Proceedings of the XVI International Symposium “Thin Films in Electronics”, Moscow, Russia, 2004 (OAO TsNITI “Tekhmash,” Moscow, 2004), p. 311 [in Russian].

    Google Scholar 

  15. D. V. Shtansky, A. N. Sheveiko, M. I. Petrzhik, et al., Surf. Coat. Technol. 200, 208 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Petrzhik.

Additional information

Original Russian Text © M.I. Petrzhik, E.A. Levashov, 2007, published in Kristallografiya, 2007, Vol. 52, No. 6, pp. 1002–1010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrzhik, M.I., Levashov, E.A. Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing. Crystallogr. Rep. 52, 966–974 (2007). https://doi.org/10.1134/S1063774507060065

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774507060065

PACS numbers

Navigation