Skip to main content
Log in

Relationship between the rotation angles of octahedra and bond-strength energy in crystals with perovskite structure

  • Theory of Crystal Structures
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The dependence of the strain energy of anion-cation bonds on the sum Ψ2 of squares of the angles of ordered rotations of octahedra around the coordinate axes of the reduced cell has been determined for ABX 3 compounds with perovskite structure in the two-particle approximation. A relation determining the change in the thermodynamic Gibbs potential with allowance for the change in the bond-strain energy in the dependence on Ψ2 is proposed. An expression for the equilibrium value of Ψ2 as a function of the bond-strain energy and temperature is obtained. Analysis of Ψ2 is performed for a homologous series of LnVO3, LnFeO3, and LnAlO3 compounds (Ln are rare earth elements) and a series of CaBO 3 and SrBO3 compounds has been performed. It is shown that the calculated values of Ψ2 for each of these series of compounds are in agreement with the values experimentally obtained from the structural data. The transition temperatures of the compounds belonging to the series studied into the cubic phase are estimated and compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Comes, M. Lambert, and A. Guimier, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 26, 244 (1970).

    Article  ADS  Google Scholar 

  2. J. D. Axe, J. Harada, and G. Shirane, Phys. Rev. B: Solid State 1, 1227 (1970).

    ADS  Google Scholar 

  3. J. F. Scott, Rev. Mod. Phys. B 46, 83 (1974).

    Article  ADS  Google Scholar 

  4. E. A. Stern and Y. Yokoby, Phys. Chem. Solids 57, 1449 (1996).

    Article  ADS  Google Scholar 

  5. N. M. Olekhnovich, Kristallografiya 50(3), 481 (2005) [Crystallogr. Rep. 50, 435 (2005)].

    Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, 2nd ed. (Nauka, Moscow, 1964; Pergamon, Oxford, 1969).

    Google Scholar 

  7. N. M. Olekhnovich, Kristallografiya 49(5), 820 (2004) [Crystallogr. Rep. 49, 733 (2004)].

    Google Scholar 

  8. A. M. Glazer, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 3384 (1972).

    Article  Google Scholar 

  9. K. S. Aleksandrov, Kristallografiya 21, 249 (1976) [Sov. Phys. Crystallogr. 21, 133 (1976)].

    Google Scholar 

  10. Y. Zhao, D. J. Weidner, J. B. Parise, and D. E. Cox, Phys. Earth Planet. Inter. 76, 17 (1993).

    Article  ADS  Google Scholar 

  11. Ch. J. Howard, B. J. Kennedy, and B. C. Chakoumakos, J. Phys.: Condens. Matter 12, 349 (2000).

    Article  ADS  Google Scholar 

  12. B. J. Kennedy and B. A. Hunter, Phys. Rev. B: Condens. Matter Mater. Phys. 58, 653 (1998).

    ADS  Google Scholar 

  13. B. C. Chakoumakos, S. E. Magler, S. T. Misture, and H. M. Christen, Physica B 241, 358 (1998).

    Article  ADS  Google Scholar 

  14. A. Ahtee, M. Ahtee, A. M. Glazer, and A. W. Hewat, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 32, 3243 (1976).

    Article  Google Scholar 

  15. M. Ahtee, A. M. Glazer, and A. W. Hewat, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 34, 752 (1978).

    Article  Google Scholar 

  16. S. L. Cuffini, J. A. Guevara, and Y. P. Mascarenha, Mater. Sci. Forum 228, 789 (1996).

    Article  Google Scholar 

  17. T. C. Huang, W. Parrish, H. Toraya, et al., Mater. Res. Bull. 25, 1091 (1990).

    Article  Google Scholar 

  18. V. G. Zubkov, I. F. Berger, Z. M. Pesina, et al., Dokl. Akad. Nauk SSSR 31, 459 (1986).

    Google Scholar 

  19. H. Seim, H. Fjellvag, and B. C. Hauback, Acta Chem. Scand. 52, 1301 (1998).

    Article  Google Scholar 

  20. A. Bombik, B. Lesniewska, and A. Oles, Phys. Status Solidi A 50, 17 (1978).

    Article  Google Scholar 

  21. J. Pickardt, T. Schendler, and M. Kolm, Z. Anorg. Allg. Chem. 560, 153 (1988).

    Article  Google Scholar 

  22. V. G. Zubkov, G. V. Bazuev, and G. P. Shveĭkin, Kristallografiya 25, 180 (1980) [Sov. Phys. Crystallogr. 25, 103 (1980)].

    Google Scholar 

  23. P. Bordet, C. Chaillout, M. Marezio, et al., J. Solid State Chem. 106, 253 (1993).

    Article  ADS  Google Scholar 

  24. M. Marezio, J. P. Remeika, and P. D. Dernier, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 26, 2008 (1970).

    Article  Google Scholar 

  25. S. E. Dann, D. B. Currie, M. T. Weler, et al., J. Solid State Chem. 109, 134 (1994).

    Article  ADS  Google Scholar 

  26. M. Tanaka, T. Shishido, H. Horiuchi, et al., J. Alloys Compd. 192, 87 (1993).

    Article  Google Scholar 

  27. M. Marezio, P. D. Dernier, and J. P. Remeika, J. Solid State Chem. 4, 11 (1972).

    Article  ADS  Google Scholar 

  28. A. Bombik, B. Lesniewska, J. Mayer, et al., J. Magn. Magn. Mater. 168, 139 (1997).

    Article  ADS  Google Scholar 

  29. J. Hamman and M. Ocio, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 33, 975 (1977).

    Article  ADS  Google Scholar 

  30. A. A. Levin, Kristallografiya 37, 1020 (1992) [Sov. Phys. Crystallogr. 37, 543 (1992)].

    Google Scholar 

  31. R. Diehl and G. Brandt, Mater. Res. Bull. 10, 85 (1975).

    Article  Google Scholar 

  32. M. Vallet-Regi, J. M. Gonzales-Calbet, M. A. Alario-Franco, and A. Vegas, Acta Crystallogr., Sect. B: Struct. Sci. 42, 167 (1986).

    Article  Google Scholar 

  33. H. J. A. Koopmans, G. M. H. van de Velde, and P. J. Gellings, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 39, 1323 (1983).

    Article  Google Scholar 

  34. C. W. Jones, P. D. Battle, P. Lightfoot, and W. T. A. Harrison, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 45, 365 (1989).

    Article  Google Scholar 

  35. J. A. Cuevara, S. L. Cuffini, Y. P. Mascarenhas, et al., Mater. Sci. Forum 278, 720 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Olekhnovich.

Additional information

Original Russian Text © N.M. Olekhnovich, 2007, published in Kristallografiya, 2007, Vol. 52, No. 5, pp. 789–797.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olekhnovich, N.M. Relationship between the rotation angles of octahedra and bond-strength energy in crystals with perovskite structure. Crystallogr. Rep. 52, 759–767 (2007). https://doi.org/10.1134/S106377450705001X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377450705001X

PACS numbers

Navigation