Skip to main content
Log in

Specific features of growth of single crystals of complex oxides with an oxygen deficit

  • Crystal Growth
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

Some methods for estimating the concentration of vacancies in crystals and procedures for decreasing their number are considered by the example of LiNbO3, SrTiO3, YAlO3, and PbWO4 crystals. In LiNbO3 crystals, nonstoichiometry was determined by comparing the density determined via X-ray diffraction with the experimental value. In SrTiO3 and YAlO3 crystals, the vacancy concentration was estimated with methods based on additivity of refractions. The vacancy concentration in the LiNbO3 and PbWO4 crystals was decreased by doping them with elements of lower valence and annealing in air and vacuum. Some specific features of the growth of PbWO4 crystals affecting their quality are discussed. Peculiarities of the formation of lithium niobate, strontium titanate, yttrium orthoaluminate, and lead tungstate crystals are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kh. S. Bagdasarov, Modern Crystallography (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  2. P.A. Studenikin, in Proceedings of IOFAN (Nauka, Moscow, 2002), Vol. 58 [in Russian].

    Google Scholar 

  3. Yu. S. Kuz’minov, Kristallografiya 39(3), 530 (1994) [Crystallogr. Rep. 39, 471 (1994)].

    Google Scholar 

  4. Yu. S. Kuz’minov, Lithium Niobate Crystals (International Science Publishing, Cambridge, 1992), p. 126.

    Google Scholar 

  5. Nonstoichiometric Compounds, Ed. by L. Mandel’korn (Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  6. P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972; Mir, Moscow, 1975).

    Google Scholar 

  7. B. C. Grabmaier, W. Wersing, and W. Koestler, J. Cryst. Growth 110, 339 (1991).

    Article  Google Scholar 

  8. S. C. Abrahams and P. Marsh, Acta Crystallogr., Sect. B: Struct. Sci. 42, 61 (1986).

    Article  Google Scholar 

  9. Y. Furukawa, M. Sato, F. Ninanda, et al., J. Cryst. Growth 99, 832 (1990).

    Google Scholar 

  10. J. R. Carruthers, G. E. Peterson, M. Brasko, and P. M. Bridenbaugh, J. Appl. Phys. 42, 1846 (1971).

    Article  Google Scholar 

  11. P. Lerner, C. Legras, and J. P. Dumas, J. Cryst. Growth 3/4, 231 (1968).

    Article  Google Scholar 

  12. D. M. Smyth, Ferroelectrics 50, 93 (1983).

    Google Scholar 

  13. O. F. Schirmer, O. Thiemann, M. Wohlecke, et al., J. Phys. Chem. Solids 52, 185 (1991).

    Article  Google Scholar 

  14. W. Bollmann, K. Schilothauer, and J. Zogal, Krist. Tech. 11(2), 1327 (1977).

    Google Scholar 

  15. V. I. Simonov, Kristallografiya 48(Suppl.), S91 (2003) [Crystallogr. Rep. 48 (Suppl.), S82 (2003)].

    Google Scholar 

  16. H. Donnerberg, S. M. Tomlinson, C. R. A. Catlow, et al., Phys. Rev. B 44, 4877 (1991).

    Article  ADS  Google Scholar 

  17. Z. I. Ivanova, A. I. Kovrigin, G. V. Luchinskiĭ, et al., Kvantovaya Elektron. 7, 1013 (1980).

    Google Scholar 

  18. A. F. Konstantinova, L. A. Korostel’, and N. A. Kulagin, Kristallografiya 40(4), 692 (1995) [Crystallogr. Rep. 40, 640 (1995)].

    Google Scholar 

  19. A. F. Konstantinova, L. A. Korostel’, and S. N. Sul’yanov, Kristallografiya 43(5), 903 (1998) [Crystallogr. Rep. 43, 849 (1998)].

    Google Scholar 

  20. L. A. Korostel’, E. V. Zhabotinskiĭ, A. F. Konstantinova, et al., Kristallografiya 39(6), 1092 (1994) [Crystallogr. Rep. 39, 1004 (1994)].

    Google Scholar 

  21. N. A. Kulagin, L. A. Korostel’, and V. A. Sandulenko, Izv. Akad. Nauk 56(2), 21 (1994).

    Google Scholar 

  22. N. A. Kulagin, Fiz. Tverd. Tela (Leningrad) 25(11), 3392 (1983) [Sov. Phys. Solid State 25, 1952 (1983)].

    Google Scholar 

  23. P. V. Koftunenko, Physical Chemistry of Solids. Crystals with Defects (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  24. A. F. Konstantinova, A. N. Stepanov, L. A. Korostel’, et al., Kristallografiya 38(12), 194 (1993).

    Google Scholar 

  25. A. F. Konstantinova, G. N. Gorbenko, and L. A. Korostel’, Kristallografiya 41(2), 320 (1996) [Crystallogr. Rep. 41, 302 (1996)].

    Google Scholar 

  26. Kh. S. Bagdasarov, Mater. Élektron. Tekh., No. 1, 4 (2004).

  27. B. N. Nekrasov, Course of Chemistry (Goskhimizdat, Moscow 1955) [in Russian].

    Google Scholar 

  28. Phase Diagrams of Refractory Oxide Systems: Handbook (Nauka, Leningrad, 1988), Vol. 5, p. 346 [in Russian].

  29. S. F. Burachas, S. Ya. Beloglovskiĭ, D. V. Elizarov, et al., Poverkhnost, No. 2, 5 (2002).

  30. S. F. Burachas, S. Ya. Beloglovskiĭ, D. V. Elizarov, et al., Izv. Vuzov. Mater. Élektron. Tekh., 35 (2004).

  31. A. N. Annenkov, M. Korzhik, O. Missevitch, et al., IEEE Trans. No. S-37, 10 (1999).

    Google Scholar 

  32. A. Fedorov, M. Korzhik, O. Missevitch, et al., Radiat. Instrum. 26(1), 107 (1996).

    Google Scholar 

  33. A. N. Annenkov, A. Fedorov, Ph. Galez, et al., Phys. Status Solidi A, No. 151, 1 (1996).

  34. Q. Lin and X. Feng, J. Phys.: Condens. Matter 15, 1963 (2003).

    Article  ADS  Google Scholar 

  35. A. N. Annenkov, Candidate’s Dissertation in Technical Sciences (MISiS, Moscow, 2005) [in Russian].

    Google Scholar 

  36. A. N. Belsky, V. V. Mikhailin, A. N. Annenkov, et al., Chem. Phys. Lett. 277, 65 (1997).

    Article  Google Scholar 

  37. A. E. Dossovitski, A. L. Mikhlin, A. N. Annenkov, et al., Nucl. Instrum. Methods Phys. Res. A 486, 98 (2002).

    Article  ADS  Google Scholar 

  38. N. Senguttuvan, S. Premila, B. Moorhy, and C. Subramanian, J. Cryst. Growth 183, 391 (1998).

    Article  Google Scholar 

  39. B. Gong, D. Z. Shen, G. H. Ren, et al., J. Inorg. Mater. 17(2), 215 (2002).

    Google Scholar 

  40. C. Yang, Y. Guo, P. Shi, and G. Chen, J. Cryst. Growth 226(1), 79 (2001).

    Article  Google Scholar 

  41. J. R. Han, G. Y. Zhou, S. J. Zhang, et al., Prog. Cryst. Growth Charact. Mater. 40(1–4), 167 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.S. Kuz’minov, 2006, published in Kristallografiya, 2006, Vol. 51, No. 3, pp. 533–541.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuz’minov, Y.S. Specific features of growth of single crystals of complex oxides with an oxygen deficit. Crystallogr. Rep. 51, 500–507 (2006). https://doi.org/10.1134/S1063774506030217

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774506030217

PACS numbers

Navigation