Skip to main content
Log in

Optical Characteristics of a Magnetocentrifugal Disk Wind in the Visual, Ultraviolet, and X-ray Spectral Ranges

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The optical characteristics of a magnetocentrifugal disk wind from T Tauri stars that we calculated based on the MHD models of Safier (1993a, 1993b) are presented. For an outflow rate in the range \(10^{-10}{-}10^{-7} M_{\odot}\) yr\({}^{-1}\) we calculated the critical angles at which the wind becomes opaque in the optical, ultraviolet, and X-ray parts of the spectrum. The illumination of the outer regions of protoplanetary disks involved in creating a photoevaporating wind by the star and the conditions for observing young stars in different wavelength ranges depend on these angles. We show that at the early evolutionary stages of T Tauri stars the disk wind is capable of completely shielding the star and preventing the direct illumination of the peripheral disk regions in both optical and X-ray ranges. By absorbing the bulk of the stellar radiation, the disk wind itself becomes a radiation source capable of heating the disk. We show that at an outflow rate \({\geq}10^{-9} M_{\odot}\) yr\({}^{-1}\) the fraction of the radiation absorbed by the wind can reach \(60\%\). Hot accretion spots can contribute significantly to the absorbed radiation. This allows the disk wind to be considered as an important infrared radiation source of T Tauri stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. Comparison with the results of MHD calculations by Romanova et al. (2009) shows that the wind in Safier’s models turns out to be flatter at the initial acceleration phases than the canonical wind in the models of the above authors.

  2. In the models of Safier (1993a, 1993b) this temperature range corresponds to the densest disk wind region in which the gas acceleration occurs.

REFERENCES

  1. A. Bans and A. Konigl, Astrophys. J. 758, 100 (2012).

    Article  ADS  Google Scholar 

  2. R. D. Blandford and D. G. Payne, Mon. Not. R. Astron. Soc. 199, 883 (1982).

    Article  ADS  Google Scholar 

  3. J. A. Cardelli, G. C. Clayton, and J. S. Mathis, Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  4. E. I. Chiang and P. Goldreich, Astrophys. J. 490, 368 (1997).

    Article  ADS  Google Scholar 

  5. A. Dodin, Mon. Not. R. Astron. Soc. 475, 4367D (2018).

    Article  ADS  Google Scholar 

  6. A. Dodin, K. Grankin, S. Lamzin, A. Nadjip, B. Safonov, D. Shakhovskoi, V. Shenavrin, A. Tatarnikov, and O. Vozyakova, Mon. Not. R. Astron. Soc. 482, 5524 (2019).

    Article  ADS  Google Scholar 

  7. C. P. Dullemond, C. Dominik, and A. Nattta, Astrophys. J. 560, 957 (2001).

    Article  ADS  Google Scholar 

  8. C. Dullemond, M. E. van den Ancker, B. Acke, and R. van Boekel, Astrophys. J. 594, L47 (2003).

    Article  ADS  Google Scholar 

  9. B. Ercolano and J. E. Owen, Mon. Not. R. Astron. Soc. 406, 1553 (2010).

    ADS  Google Scholar 

  10. B. Ercolano, C. J. Clarke, and J. J. Drake, Astrophys. J. 699, 1639 (2009).

    Article  ADS  Google Scholar 

  11. E. D. Feigelson and T. Montmerle, Ann. Rev. Astron. Astrophys. 37, 363 (1999).

    Article  ADS  Google Scholar 

  12. J. Ferreira, in Angular Momentum Transport during Star Formation and Evolution, Ed. by P. Hennebelle and C. Charbonnel EAS Publ. Ser. 62, 169 (2013).

  13. K. Findeisen, L. Hillenbrand, E. Ofek, D. Levitan, B. Sesar, R. Laher, and J. Surace, Astrophys. J. 768, 93 (2013).

    Article  ADS  Google Scholar 

  14. E. Flaccomio, F. Damiani, G. Micela, S. Sciortino, F. R. Harnden, Jr., S. S. Murray, and S. J. Wolk, Astrophys. J. 582, 398 (2003).

    Article  ADS  Google Scholar 

  15. E. Franciosini, R. Pallavicini, and J. Sanz-Forcada, Astron. Astrophys. 446, 501 (2006).

    Article  ADS  Google Scholar 

  16. R. Garcia Lopez, L. V. Tambovtseva, D. Schertl, V. P. Grinin, K.-H. Hofmann, G. Weigelt, and A. Caratti o Garatti, Astron. Astrophys. 576A, 84G (2015).

  17. V. P. Grinin, A. A. Arkharov, O. Yu. Barsunova, S. G. Sergeev, and L. V. Tambovtseva, Astron. Lett. 35, 114 (2009).

    Article  ADS  Google Scholar 

  18. M. Güdel et al., Astron. Astrophys. Rev. 12, 71 (2004).

    Article  ADS  Google Scholar 

  19. L. Hartmann, G. Herczeg, and N. Calvet, Ann. Rev. Astron. Astrophys. 54, 135 (2016).

    Article  ADS  Google Scholar 

  20. D. Hollenbach and U. Gorti, Astrophys. J. 703, 1203 (2009).

    Article  ADS  Google Scholar 

  21. S. J. Kenyon and L. Hartmann, Astrophys. J. 101, 117 (1995).

    Article  Google Scholar 

  22. A. Konigl, Astrophys. J. 342, 208 (1991).

    Article  ADS  Google Scholar 

  23. A. Konigl and R. E. Pudritz, in Protostars and Planets IV, Ed. by V. Mannings, A. P. Boss, and S. S. Russell (Univ. Arizona Press, 2000), p. 759.

  24. A. Kreplin, L. Tambovtseva, V. Grinin, S. Kraus, G. Weigelt, and Y. Wang, Mon. Not. R. Astron. Soc. 476, 4520 (2018).

    Article  ADS  Google Scholar 

  25. S. A. Lamzin, Astron. Rep. 42, 322 (1998).

    ADS  Google Scholar 

  26. M. G. Malygin, R. Kuiper, H. Klahr, C. P. Dullemond, and Th. Henning, Astron. Astrophys. 568, A91 (2014).

    Article  ADS  Google Scholar 

  27. R. Morrison and D. McCammon, Astrophys. J. 270, 119 (1983).

    Article  ADS  Google Scholar 

  28. J. Muzerolle, N. Calvet, and L. Hartmann, Astrophys. J. 550, 944 (2001).

    Article  ADS  Google Scholar 

  29. A. Natta and B. A. Whitney, Astron. Astrophys. 364, 633 (2000).

    ADS  Google Scholar 

  30. P. P. Petrov, G. F. Gahm, A. A. Djupvik, E. V. Babina, S. A. Artemenko, and K. N. Grankin, Astron. Astrophys. 577, A73 (2015).

    Article  ADS  Google Scholar 

  31. T. Preibisch, Y. Kim, F. Favata, E. D. Feigelson, E. Flaccomio, K. Getman, G. Micela, S. Sciortino, et al., Astrophys. J. Suppl. Ser. 160, 401 (2005).

    Article  ADS  Google Scholar 

  32. D. A. Principe, G. Sacco, J. H. Kastner, B. Stelzer, and J. M. Alcala, Mon. Not. R. Astron. Soc. 459, 2097 (2016).

    Article  ADS  Google Scholar 

  33. P. J. Rodenkirch, H. Klahr, C. Fendt, and C. P. Dullemond, Astron. Astrophys. 633, A21 (2020).

    Article  ADS  Google Scholar 

  34. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, and R. V. E. Lovelace, Mon. Not. R. Astron. Soc. 399, 1802 (2009).

    Article  ADS  Google Scholar 

  35. P. Safier, Astrophys. J. 408, 115 (1993a).

    Article  ADS  Google Scholar 

  36. P. Safier, Astrophys. J. 408, 148 (1993b).

    Article  ADS  Google Scholar 

  37. P. C. Schneider, H. M. Günther, J. Robrade, J. H. M. M. Schmitt, and M. Güdel, Astron. Astrophys. 618, A55 (2018).

    Article  ADS  Google Scholar 

  38. V. I. Shenavrin, P. P. Petrov, and K. N. Grankin, Inform. Bull. Var. Stars, No 6143, 1 (2015).

  39. S. G. Shulman and V. P. Grinin, Astron. Lett. 45, 384 (2019).

    Article  ADS  Google Scholar 

  40. L. V. Tambovtseva and V. P. Grinin, Astron. Lett. 34, 231 (2008).

    Article  ADS  Google Scholar 

  41. A. Telleschi, M. Güdel, K. R. Briggs, M. Audard, and F. Palla, Astron. Astrophys. 468, 425 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the anonymous referee for the useful remarks.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Grinin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albrant, M.A., Grinin, V.P. & Ermolaeva, T.A. Optical Characteristics of a Magnetocentrifugal Disk Wind in the Visual, Ultraviolet, and X-ray Spectral Ranges. Astron. Lett. 50, 269–278 (2024). https://doi.org/10.1134/S1063773724700099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773724700099

Keywords:

Navigation