Skip to main content
Log in

Induced Magnetic Field in Accretion Disks around Neutron Stars

  • Published:
Astronomy Letters Aims and scope Submit manuscript


In pulsating X-ray sources a magnetized neutron star is surrounded by an accretion disk whose structure requires a study. In particular, the dipole magnetic field of the star can partially penetrate the disk and, freezing into the matter, can give rise to an induced magnetic field in the disk. The field growth can be limited by its turbulent diffusion. In this paper we calculate such an induced field. The problem is reduced to solving the induction equation in the presence of diffusion. An analytical solution of the equation has been obtained, with the radial and vertical structures of the induced field having been calculated simultaneously. The radial structure is close to the previously predicted dependence on the difference of the angular velocities of the disk and the magnetosphere: \(b\propto\Omega_{\textrm{s}}-\Omega_{\textrm{k}}\), while the vertical structure of the field is close to the linear proportionality between the field and the height above the equator: \(b\propto z\). The possibility of the existence of nonstationary quasi-periodic components of the induced magnetic field is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3


  1. Only the poloidal field contributes to \(\mathbf{v}\times\mathbf{B}\), and this poloidal field in the model being used is simply the dipolar poloidal component (see Eq. (2)).

  2. This step is needed for the analytical solution of (21), but actually it is easier and faster to solve the boundary value problems for \(B_{n}(r)\) (for an acceptable number \(n\)) numerically. In any case, the analytical solution is useful at least for testing the numerical code.

  3. The boundary conditions at the disk surfaces were not set by the author in an explicit form.


  1. C. G. Campbell, Mon. Not. R. Astron. Soc. 229, 405 (1987).

    Article  ADS  Google Scholar 

  2. C. G. Campbell, Geophys. Astron. Fluid 63, 179 (1992).

    Article  ADS  Google Scholar 

  3. P. Ghosh, F. K. Lamb, and C. J. Pethick, Astrophys. J. 217, 578 (1977).

    Article  ADS  CAS  Google Scholar 

  4. P. Ghosh and F. K. Lamb, Astrophys. J. 232, 259 (1979).

    Article  ADS  Google Scholar 

  5. P. Ghosh and F. K. Lamb, Astrophys. J. 234, 296 (1979).

    Article  ADS  Google Scholar 

  6. W. Kluźniak and S. Rappaport, Astrophys. J. 671, 1990 (2007).

    Article  ADS  Google Scholar 

  7. D. Lai, Astrophys. J. 524, 1030 (1999).

    Article  ADS  Google Scholar 

  8. G. Lipunova, K. Malanchev, and N. Shakura, Astrophys. Space Sci. Libr. 454, 1 (2018).

    Article  ADS  Google Scholar 

  9. R. V. E. Lovelace, M. M. Romanova, and G. S. Bisnovatyi-Kogan, Mon. Not. R. Astron. Soc. 275, 244 (1995).

    Article  ADS  Google Scholar 

  10. S. Matt and R. E. Pudritz, Astrophys. J. 632, 135 (2005).

    Article  ADS  Google Scholar 

  11. L. Naso and J. C. Miller, Astron. Astrophys. 521, 31 (2010).

    Article  ADS  Google Scholar 

  12. L. Naso and J. C. Miller, Astron. Astrophys. 531, 163 (2011).

    Article  ADS  Google Scholar 

  13. M. V. Rekowski, G. Rüdiger, and D. Elstner, Astron. Astrophys. 353, 813 (2000).

    ADS  Google Scholar 

  14. D. A. Uzdensky, A. Königl, and C. Litwin, Astrophys. J. 565, 1191 (2002).

    Article  ADS  Google Scholar 

  15. D. A. Uzdensky, A. Königl, and C. Litwin, Astrophys. J. 565, 1205 (2002).

    Article  ADS  Google Scholar 

  16. Y.-M. Wang, Astron. Astrophys. 183, 257 (1987).

    ADS  Google Scholar 

  17. Y.-M. Wang, Astrophys. J. 449, 153 (1995).

    ADS  Google Scholar 

  18. Y.-M. Wang, Astrophys. J. 475, 135 (1997).

    Article  ADS  Google Scholar 

Download references


I thank G.V. Lipunova for the productive discussion of the manuscript.


This work was supported by the Russian Science Foundation (project no. 21-12-00141).

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. V. Kuzin.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzin, A.V. Induced Magnetic Field in Accretion Disks around Neutron Stars. Astron. Lett. 49, 575–582 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: