Skip to main content
Log in

Extreme Values of Sunspot Activity on a Long Time Scale

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The extreme levels of solar activity on time scales of 300–400 and 9000 years are considered. The total sunspot area \(AR\), a physical index of solar activity, has been estimated using the sunspot number reconstruction from Wu et al. (2018). The main study has been carried out precisely in terms of this index. The variations in solar activity at the epoch of the last 300–400 years represent fairly well its variations on time scales of the order of nine millennia. The maximum level of solar activity for the yearly averages is \(AR_{M}=2930\pm 400\) m.s.h. (millionths of the solar hemisphere). The upper limit for the daily values is \(AR_{M}=7500\pm 2200\) m.s.h. for the traditional sunspot areas corrected for the perspective distortion and \(AR_{OM}=11\,400\pm 3300\) m.s.d. (millionths of the solar disk) for the so-called ‘‘observed’’ areas—the sunspot projections onto the visible solar disk. The maximum yearly averages of the sunspot number \(SN_{M}=258\pm 38\) and the sunspot group number \(GN_{M}=12.3\pm 2.4\) have also been estimated; 11.3\({\%}\) of the time the solar activity is at an extremely high level; 8.5 and 4.5\({\%}\) of the time its level corresponds to the Dalton minimum or lower and an extremely low one, respectively. Thus, extremely high levels are more likely for solar activity than extremely low ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. https://solarscience.msfc.nasa.gov/greenwch/daily_area.txt

  2. https://www.sidc.be/silso/DATA/SN_m_tot_V2.0.txt

REFERENCES

  1. F. J. Acero, V. M. S. Carrasco, M. C. Gallego, J. A. García, and J. M. Vaquero, Astrophys. J. 839, 98 (2017).

    Article  ADS  Google Scholar 

  2. F. J. Acero, M. C. Gallego, J. A. García, I. G. Usoskin, and J. M. Vaquero, Astrophys. J. 853, 80 (2018).

    Article  ADS  Google Scholar 

  3. T. A. Agekyan, Foundations of the Error Theory for Astronomers and Physicists (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  4. S. V. Berdyugina, Liv. Rev. Solar. Phys. 2, 8 (2005).

    ADS  Google Scholar 

  5. G. E. Box and H. L. Lucas, Biometrika 46, 77 (1959).

    Article  MathSciNet  Google Scholar 

  6. R. C. Carrington, Mon. Not. R. Astron. Soc. 20, 13 (1859).

    Article  ADS  Google Scholar 

  7. T. Chatzistergos, I. G. Usoskin, G. A. Kovaltsov, N. A. Krivova, and S. K. Solanki, Astron. Astrophys. 602, A69 (2017).

    Article  ADS  Google Scholar 

  8. M. Christl, A. Mangini, S. Holzkamper, and C. Spotl, J. Atmos. Solar-Terr. Phys. 66, 313 (2004).

    Article  ADS  Google Scholar 

  9. F. Clette, L. Svalgaard, J. M. Vaquero, and E. W. Cliver, Space Sci. Rev. 186, 35 (2014).

    Article  ADS  Google Scholar 

  10. E. W. Cliver and A. G. Ling, Solar Phys. 291, 2763 (2016).

    Article  ADS  Google Scholar 

  11. E. W. Cliver, C. J. Schrijver, K. Shibata, and I. G. Usoskin, Liv. Rev. Solar. Phys. 19, 2 (2022).

    Article  ADS  Google Scholar 

  12. E. S. Dmitrienko and I. S. Savanov, Astron. Lett. 48, 676 (2022).

    Article  ADS  Google Scholar 

  13. I. V. Dmitrieva, K. M. Kuzanyan, and V. N. Obridko, Solar Phys. 195, 209 (2000).

    Article  ADS  Google Scholar 

  14. C. Fröhlich, Space Sci. Rev. 125, 53 (2006).

    Article  ADS  Google Scholar 

  15. R. E. Gershberg, Solar-Type Activity in Main-Sequence Stars (Springer, Berlin, 2005).

    Google Scholar 

  16. N. Gopalswamy, in Extreme Events in Geospace, Ed. by N. Buzulukova (Elsevier, Amsterdam, 2018), p. 37.

    Google Scholar 

  17. J. C. Hall, M. S. Giampapa, G. W. Henry, J. L. Lean, S. H. Saar, and D. R. Soderblom, in Astro2010: The Astronomy and Astrophysics Decadal Survey, Science White Papers (2009), Vol. 111.

    Google Scholar 

  18. D. H. Hathaway, Liv. Rev. Solar. Phys. 12, 4 (2015).

    Article  ADS  Google Scholar 

  19. D. V. Hoyt and K. H. Schatten, Solar Phys. 179, 189 (1998).

    Article  ADS  Google Scholar 

  20. N. V. Karachik, A. A. Pevtsov, and Yu. A. Nagovitsyn, Mon. Not. R. Astron. Soc. 488, 3804 (2019).

    Article  ADS  Google Scholar 

  21. M. M. Katsova, V. N. Obridko, D. D. Sokoloff, and I. M. Livshits, Astrophys. J. 936, 49 (2022).

    Article  ADS  Google Scholar 

  22. G. Kopp and A. Shapiro, Solar Phys. 296, 60 (2021).

    Article  ADS  Google Scholar 

  23. M. Korte and C. G. Constable, Earth Planet. Sci. Lett. 236, 348 (2005).

    Article  ADS  Google Scholar 

  24. K. Levenberg, Quart. Appl. Math. 2, 164 (1944).

    Article  MathSciNet  Google Scholar 

  25. S. Mandal, N. A. Krivova, S. K. Solanki, N. Sinha, and D. Banerjee, Astron. Astrophys. 640, A78 (2020).

    Article  ADS  Google Scholar 

  26. D. Marquardt, SIAM J. Appl. Math. 11, 431 (1963).

    Article  Google Scholar 

  27. Yu. A. Nagovitsyn and K. Georgieva, Geomagn. Aeron. 57, 783 (2017).

    Article  ADS  Google Scholar 

  28. Yu. A. Nagovitsyn and V. G. Ivanov, Solar Phys. 298, 37 (2023).

    Article  ADS  Google Scholar 

  29. Yu. A. Nagovitsyn and A. I. Kuleshova, Astron. Rep. 56, 800 (2012).

    Article  ADS  Google Scholar 

  30. Yu. A. Nagovitsyn and A. A. Osipova, Mon. Not. R. Astron. Soc. 505, 1206 (2021).

    Article  ADS  Google Scholar 

  31. Y. A. Nagovitsyn and A. A. Pevtsov, Astrophys. J. 833, 94 (2016).

    Article  ADS  Google Scholar 

  32. Yu. A. Nagovitsyn, A. A. Pevtsov, and W. C. Livingston), Astrophys. J. Lett. 758, L20 (2012).

    Article  ADS  Google Scholar 

  33. Yu. A. Nagovitsyn, V. N. Obridko, and A. I. Kuleshova), Solar Phys. 290, 1285 (2015).

    Article  ADS  Google Scholar 

  34. Y. A. Nagovitsyn, A. A. Pevtsov, A. A. Osipova, A. G. Tlatov, E. V. Miletskii, and E. Yu. Nagovitsyna, Astron. Lett. 42, 703 (2016).

    Article  ADS  Google Scholar 

  35. Yu. A. Nagovitsyn, A. A. Pevtsov, and A. A. Osipova, Astron. Nachr. 338, 26 (2017).

    Article  ADS  Google Scholar 

  36. Yu. A. Nagovitsyn, A. A. Pevtsov, A. A. Osipova, and V. G. Ivanov, Geomagn. Aeron. 58, 1170 (2018).

    Article  ADS  Google Scholar 

  37. M. G. Ogurtsov, Adv. Space Res. 64, 1112 (2019).

    Article  ADS  Google Scholar 

  38. A. A. Osipova and Yu. A. Nagovitsyn, Geomagn. Aeron. 57, 1092 (2017).

    Article  ADS  Google Scholar 

  39. V. V. Pipin, A. G. Kosovichev, and V. E. Tomin, Astrophys. J. 949, 7 (2023).

    Article  ADS  Google Scholar 

  40. A. A. Ramos, Astron. Astrophys. 472, 293 (2007).

    Article  ADS  Google Scholar 

  41. T. Reinhold, A. I. Shapiro, S. K. Solanki, B. T. Montet, N. A. Krivova, R. H. Cameron, and E. M. Amazo-Gómez, Science 368 (6490), 518 (2020).

    Article  ADS  Google Scholar 

  42. I. S. Savanov, Astrophys. Bull. 70, 83 (2015a).

    Article  ADS  Google Scholar 

  43. I. S. Savanov, Astrophys. Bull. 70, 292 (2015b).

    Article  ADS  Google Scholar 

  44. I. S. Savanov, Astron. Lett. 48, 267 (2022).

    Article  ADS  Google Scholar 

  45. C. J. Schrijver, K. Kauristie, A. D. Aylward, C. M. Denardini, S. E. Gibson, A. Glover, N. Gopalswamy, M. Grande, et al., Adv. Space Res. 55, 2745 (2015).

    Article  ADS  Google Scholar 

  46. A. K. Singh, D. Siingh, and R. P. Singh, Atmos. Environ. 45, 3806 (2011).

    Article  ADS  Google Scholar 

  47. L. Svalgaard and K. H. Schatten, Solar Phys. 291, 2653 (2016).

    Article  ADS  Google Scholar 

  48. H. Svensmark, Astron. Geophys. 48, 1.18 (2007).

  49. I. G. Usoskin, S. K. Solanki, and G. A. Kovaltsov, Astron. Astrophys. 471, 301 (2007).

    Article  ADS  Google Scholar 

  50. I. G. Usoskin, G. Hulot, Y. Gallet, R. Roth, A. Licht, F. Joos, G. A. Kovaltsov, E. Thébault, and A. Khokhlov), Astron. Astrophys. 562, L10 (2014).

    Article  ADS  Google Scholar 

  51. I. G. Usoskin, G. A. Kovaltsov, M. Lockwood, K. Mursula, M. Owens, and S. K. Solanki, Solar Phys. 291, 2685 (2016).

    Article  ADS  Google Scholar 

  52. M. Waldmeier, Astron. Mitt. Eidgenoss. Sternw. Zürich 14, 105 (1935).

  53. D. M. Willis and Y. K. Tulunay, Solar Phys. 64, 237 (1979).

    Article  ADS  Google Scholar 

  54. C. J. Wu, I. G. Usoskin, N. Krivova, G. A. Kovaltsov, M. Baroni, E. Bard, and S. K. Solanki, Astron. Astrophys. 615, A93 (2018).

    Article  ADS  Google Scholar 

  55. https://www.sidc.be/silso/DATA/SN_m_tot_V2.0. txt.

  56. https://solarscience.msfc.nasa.gov/greenwch/daily_ area.txt.

Download references

ACKNOWLEDGMENTS

We thank the SILSO World Data Center (Royal Observatory, Belgium, Brussels) for the open data usage policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Nagovitsyn.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Astakhov

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagovitsyn, Y.A., Osipova, A.A. Extreme Values of Sunspot Activity on a Long Time Scale. Astron. Lett. 49, 421–429 (2023). https://doi.org/10.1134/S1063773723070034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723070034

Keywords:

Navigation