Skip to main content
Log in

Collisional Plasma Temperature and Betatron Acceleration of Quasi-thermal Electrons in Solar Flares

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Based on the model of a collapsing magnetic trap, we consider the influence of the temperature of a Maxwellian flare plasma on the efficiency of the betatron acceleration of quasi-thermal fast electrons in the cusp region of coronal loops. We show that an increase in the temperature causes a sharp growth (by 6–8 orders of magnitude) in the number density of quasi-thermal electrons which are capable of overcoming the ‘‘Coulomb loss barrier.’’ This suggests the necessity of background plasma preheating in the cusp region to \({\gtrsim}10\) MK, for which the betatron mechanism can be responsible. We discuss the connection between the impulsive phase of flare energy release and the X-ray precursors of solar flares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

REFERENCES

  1. M. J. Aschwanden, Physics of the Solar Corona: An Introduction (Springer, New York, 2004).

    Google Scholar 

  2. M. J. Aschwanden, G. Holman, A. O’Flannagain, et al., Astrophys. J. 832, 27 (2016).

    Article  ADS  Google Scholar 

  3. M. Battaglia, L. Fletcher, and A. O. Benz, Astron. Astrophys. 498, 891 (2009).

    Article  ADS  Google Scholar 

  4. S. A. Bogachev and V. V. Somov, Astron. Lett. 31, 537 (2005)].

    Article  ADS  Google Scholar 

  5. S. A. Bogachev and V. V. Somov, Astron. Lett. 35, 57 (2009).

    Article  ADS  Google Scholar 

  6. Yu. E. Charikov, A. N. Shabalin, and S. A. Kuznetsov, Geomagn. Aeron. 57, 1009 (2017).

    Article  ADS  Google Scholar 

  7. B. Chen, T. S. Bastian, C. Shen, D. E. Gary, S. Krucker, and L. Glesener, Science (Washington, DC, U. S.) 350, 1238 (2015).

    Article  ADS  Google Scholar 

  8. H. Dreicer, Phys. Rev. 115, 238 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. G. Emslie, Astrophys. J. 271, 367 (1983).

    Article  ADS  Google Scholar 

  10. L. V. Filatov, V. F. Melnikov, and S. P. Gorbikov, Geomagn. Aeron. 53, 1007 (2013).

    Article  ADS  Google Scholar 

  11. L. V. Filatov and V. F. Melnikov, Geomagn. Aeron. 57, 1001 (2017).

    Article  ADS  Google Scholar 

  12. G. D. Fleishman, G. M. Nita, B. Chen, S. Yu, and D. E. Gary, Nature (London, U.K.) 606, 674 (2022).

    Article  ADS  Google Scholar 

  13. V. E. Golant, A. P. Zhilinsky, and S. A. Sakharov, Fundamentals of Plasma Physics (Atomizdat, Moscow, 1977; Wiley, New York, 1980).

  14. P. A. Gritsyk and B. V. Somov, Proc. IAU Symp. 335, 90 (2018).

  15. F. Guo and J. Giacalone, Astrophys. J. 753, 28 (2012).

    Article  ADS  Google Scholar 

  16. R. J. Hamilton and V. Petrosian, Astrophys. J. 398, 350 (1992).

    Article  ADS  Google Scholar 

  17. H. S. Hudson, P. J. A. Sim\(\check{\mbox{o}}\)es, L. Fletcher, L. A. Hayes, and I. G. Hannah, Mon. Not. R. Astron. Soc. 501, 1273 (2021).

  18. M. Karlicky and M. Barta, Astrophys. J. 647, 1472 (2006).

    Article  ADS  Google Scholar 

  19. M. Karlicky and T. Kosugi, Astron. Astrophys. 419, 1159 (2004).

    Article  ADS  Google Scholar 

  20. D. F. Kong, F. Guo, C. Shen, B. Chen, Y. Chen, S. Musset, L. Glesener, P. Pongkitiwanichakul, and J. Giacalone, Astrophys. J. Lett. 887, L37 (2019).

    Article  ADS  Google Scholar 

  21. A. A. Korchak, Solar Phys. 66, 149 (1980).

    Article  ADS  Google Scholar 

  22. V. A. Kovalev and B. V. Somov, Astron. Lett. 29, 409 (2003).

    Article  ADS  Google Scholar 

  23. Z. Li, Y. Su, A. M. Veronig, S. Kong, W. Gan, and W. Chen, Astrophys. J. 930, 147 (2022).

    Article  ADS  Google Scholar 

  24. Y. E. Litvinenko, Astrophys. J. 462, 997 (1996).

    Article  ADS  Google Scholar 

  25. S. Liu and J. R. Jokipii, Front. Astron. Space Sci. 8, 100 (2021).

    Article  ADS  Google Scholar 

  26. C. L. Longmire, Elementary Plasma Physics (Interscience, New York, 1973).

    MATH  Google Scholar 

  27. A. L. Lysenko, A. T. Altyntsev, N. S. Meshalkina, D. Zhdanov, and G. D. Fleishman, Astrophys. J. 856, 111 (2018).

    Article  ADS  Google Scholar 

  28. A. L. Lysenko, D. D. Frederiks, G. D. Fleishman, L. R. Aptekar’, A. T. Altyntsev, et al., Phys. Usp. 63, 818 (2020).

    Article  ADS  Google Scholar 

  29. V. F. Melnikov and L. V. Filatov, Geomagn. Aeron. 60, 1126 (2020).

    Article  ADS  Google Scholar 

  30. V. F. Melnikov and L. V. Filatov, Geomagn. Aeron. 61, 1189 (2021).

    Article  ADS  Google Scholar 

  31. J. A. Miller, P. J. Cargill, A. G. Emslie, G. D. Holman, B. R. Dennis, T. N. LaRosa, R. M. Winglee, S. G. Benka, and S. Tsuneta, J. Geophys. Res. 102, 14631 (1997).

    Article  ADS  Google Scholar 

  32. L. Riddiford and S. T. Butler, London, Edinburgh, Dublin Philos. Mag. J. Sci. 43, 339, 447 (1952).

    Article  Google Scholar 

  33. I. V. Savelyev, General Physics Course, Vol. 1: Mechanics, Oscillations, and Waves, Molecular Physics (Nauka, Mocsow, 1970) [in Russian].

  34. I. N. Sharykin, A. B. Struminskii, and I. V. Zimovets, Astron. Lett. 41, 53 (2015).

    Article  ADS  Google Scholar 

  35. B. V. Somov and S. A. Bogachev, Astron. Lett. 29, 621 (2003).

    Article  ADS  Google Scholar 

  36. B. V. Somov and T. Kosugi, Astrophys. J. 485, 859 (1997).

    Article  ADS  Google Scholar 

  37. L. Spitzer, Physics of Fully Ionized Gases (Interscience, New York, 1956).

    MATH  Google Scholar 

  38. A. V. Stepanov and Yu. T. Tsap, Astron. Rep. 43, 838 (1999).

    ADS  Google Scholar 

  39. A. V. Stepanov and Y. T. Tsap, Solar Phys. 211, 135 (2002).

    Article  ADS  Google Scholar 

  40. A. V. Stepanov and V. V. Zaitsev, Magnetospheres of Active Regions of the Sun and Stars (Fizmatlit, Moscow, 2018) [in Russian].

    Google Scholar 

  41. W. F. Swann, Phys. Rev. 43, 217 (1933).

    Article  ADS  Google Scholar 

  42. B. A. Trubnikov, Probl. Plasma Phys. 1, 98 (1963).

    Google Scholar 

  43. Yu. T. Tsap, Izv. Krymsk. Astrofiz. Observ. 96, 165 (2000).

    Google Scholar 

  44. Yu. T. Tsap and Yu. G. Kopylova, Geomagn. Aeron. 57, 996 (2017).

    Article  ADS  Google Scholar 

  45. Yu. T. Tsap, G. G. Motorina, and Yu. G. Kopylova, Geomagn. Aeron. 56, 1104 (2016).

    Article  ADS  Google Scholar 

  46. Yu. T. Tsap, Yu. G. Kopylova, O. A. Korol’kova, and M. Barta, Izv. Krymsk. Astrofiz. Observ. 18, 60 (2022).

    Google Scholar 

  47. A. M. Veronig and J. C. Brown, Astrophys. J. 603, L117 (2004).

    Article  ADS  Google Scholar 

  48. A. Warmuth and G. Mann, Astron. Astrophys. 644, A172 (2020).

    Article  ADS  Google Scholar 

  49. S. M. White, M. R. Kundu, T. S. Bastian, D. E. Gary, G. J. Hurford, T. Kucera, and J. H. Bieging, Astrophys. J. 384, 656 (1992).

    Article  ADS  Google Scholar 

  50. P. Wood and T. Neukirch, Solar Phys. 226, 73 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. T. Tsap.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsap, Y.T., Melnikov, V.F. Collisional Plasma Temperature and Betatron Acceleration of Quasi-thermal Electrons in Solar Flares. Astron. Lett. 49, 200–208 (2023). https://doi.org/10.1134/S1063773723040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723040059

Keywords:

Navigation