Skip to main content
Log in

Search for Tidal Disruption Events Based on the SRG/eROSITA Survey with Subsequent Optical Spectroscopy

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The four completed six-month sky surveys with the eROSITA telescope onboard the SRG orbital observatory allow tidal disruption events (TDEs) in galactic nuclei to be searched for by their X-ray variability. In this case, variable active galactic nuclei (AGNs) are detected in much larger quantities, for the elimination of which fairly stringent criteria have to be used. Some TDEs can be missed or misclassified as probable AGNs. Optical spectroscopy needs to be performed for the final identification of TDEs among the extragalactic SRG/eROSITA transients. We consider a set of criteria by which TDEs can be distinguished from AGNs based on optical spectra and photometric information. In particular, we propose to use the ratio of the X-ray luminosity to the [O III] 5007 Å luminosity. To test the proposed method, we consider a sample of 15 extragalactic SRG/eROSITA transients whose X-ray flux changed by more than a factor of 7 between two adjacent surveys. Spectra have been taken for all these objects with Russian optical telescopes: RTT-150, AZT-33IK, RC2500, and BTA. We have managed to reveal five new and one previously known TDEs and to classify seven sources as AGNs. The nature of two more transients remains in question. The proposed method will help to set priorities to obtain a maximally complete and reliable sample of TDEs in the SRG/eROSITA survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 5

Notes

  1. Note that, generally, a change in the flux by more than a specified factor (for example, 7 or 10) between any two sky surveys is required for the classification of an object as highly variable (Medvedev et al. 2022, in print).

  2. https://www.eso.org/sci/observing/tools/standards/spectra/stanlis.html

  3. https://andor.oxinst.com/products/ikon-xl-and-ikon-large-ccd-series/ikon-l-936

  4. https://obs.sai.msu.ru/cmo/sai25/tds/

  5. The spectral resolution for a \(1^{\prime\prime}\)-wide slit.

  6. https://pypi.org/project/pyraf

REFERENCES

  1. V. L. Afanasiev and A. V. Moiseev, Baltic Astron. 20, 363 (2011).

    ADS  Google Scholar 

  2. V. L. Afanasiev, S. N. Dodonov, V. R. Amirkhanyan, and A. V. Moiseev, Astrophys. Bull. 71, 479 (2016).

    Article  ADS  Google Scholar 

  3. S. Alam, F. D. Albareti, C. Allende Prieto, F. Anders, S. F. Anderson, T. Anderton, et al., Astrophys. J. Suppl. Ser. 219, 12 (2015).

    Article  ADS  Google Scholar 

  4. R. J. Assef, D. Stern, C. S. Kochanek, A. W. Blain, M. Brodwin, M. J. I. Brown, et al., Astrophys. J. 772, 26 (2013).

    Article  ADS  Google Scholar 

  5. K. Auchettl, E. Ramirez-Ruiz, and J. Guillochon, Astrophys. J. 852, 37 (2018).

    Article  ADS  Google Scholar 

  6. J. A. Baldwin, M. M. Phillips, and R. Terlevich, Publ. Astron. Soc. Pacif. 93, 5 (1981).

    Article  ADS  Google Scholar 

  7. E. C. Bellm, S. R. Kulkarni, M. J. Graham, R. Dekany, R. M. Smith, R. Riddle, et al., Publ. Astron. Soc. Pacif. 131, 018002 (2019).

    Article  ADS  Google Scholar 

  8. M. I. Belvedersky, A. V. Meshcheryakov, P. S. Medvedev, and M. R. Gilfanov, Astron. Lett. 48, 109 (2022).

    Article  ADS  Google Scholar 

  9. N. Ben Bekhti, L. Flöer, R. Keller, J. Kerp, D. Lenz, et al. (HI4PI Collab.), Astron. Astrophys. 594, A116 (2016).

    Google Scholar 

  10. T. Boller, W. N. Brandt, and H. Fink, Astron. Astrophys. 305, 53 (1996).

    ADS  Google Scholar 

  11. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, et al. (Gaia Collab.), Astron Astrophys. 649, A1 (2021).

    Google Scholar 

  12. R. A. Burenin, A. L. Amvrosov, M. V. Eselevich, V. M. Grigor’ev, V. A. Aref’ev, V. S. Vorob’ev, et al., Astron. Lett. 42, 295 (2016).

    Article  ADS  Google Scholar 

  13. K. C. Chambers, E. A. Magnier, N. Metcalfe, H. A. Flewelling, M. E. Huber, C. Z. Waters, et al., arXiv: 1612.05560 (2016).

  14. P. Charalampopoulos, G. Leloudas, D.B. Malesani, T. Wevers, I. Arcavi, M. Nicholl, et al., Astron Astrophys. 659, A34 (2022).

    Article  Google Scholar 

  15. R. Cid Fernandes, G. Stasińska, M. S. Schlickmann, A. Mateus, N. Vale Asari, W. Schoenell, et al., Mon. Not. R. Astron. Soc. 403, 1036 (2010).

    Article  ADS  Google Scholar 

  16. R. Cid Fernandes, G. Stasińska, A. Mateus, and N. Vale Asari, Mon. Not. R. Astron. Soc. 413, 1687 (2011).

    Article  ADS  Google Scholar 

  17. R. M. Cutri et al., VizieR Online Data Catalog (2012), p. II/311.

  18. R. M. Cutri, E. L. Wright, T. Conrow, J. W. Fowler, P. R. M. Eisenhardt, C. Grillmair, et al., VizieR Online Data Catalog (2021), p. II/328.

  19. A. V. Dodin, S. A. Potanin, N. I. Shatsky, A. A. Belinski, K. E. Atapin, M. A. Burlak, et al., Astron. Lett. 46, 429 (2020).

    Article  ADS  Google Scholar 

  20. A. V. Dodin, N. I. Shatsky, A. A. Belinski, K. E. Atapin, M. A. Burlak, S. G. Zheltoukhov, et al., Astron. Lett. 47, 661 (2021).

    Article  ADS  Google Scholar 

  21. E. L. Fitzpatrick, D. Massa, K. D. Gordon, R. Bohlin, and G. C. Clayton, Astrophys. J. 886, 108 (2019).

    Article  ADS  Google Scholar 

  22. M. R. Gilfanov, Astron. Lett. (2023, in press).

  23. A. Ginsburg, V. Sokolov, M. de Val-Borro, E. Rosolowsky, J. E. Pineda, B. M. Sipöcz, et al., Astron. J. 163, 291 (2022).

    Article  ADS  Google Scholar 

  24. O. González-Martın, J. Masegosa, I. Márquez M. Guainazzi and E. Jiménez-Bailón, Astron. Astrophys. 506, 1107 (2009).

    ADS  Google Scholar 

  25. E. Hammerstein, S. van Velzen, S. Gezari, S. B. Cenko, Y. Yao, C. Ward, et al., arXiv: 2203.01461 (2022).

  26. T. M. Heckman, A. Ptak, A. Hornschemeier, and G. Kauffmann, Astrophys. J. 634, 161 (2005).

    Article  ADS  Google Scholar 

  27. L. C. Ho, Ann. Rev. Astron. Astrophys. 46, 475 (2008).

    Article  ADS  Google Scholar 

  28. G. Kauffmann, T. M. Heckman, C. Tremonti, J. Brinchmann, S. Charlot, S. D. M. White, et al., Mon. Not. R. Astron. Soc. 346 1055 (2003).

    Article  ADS  Google Scholar 

  29. L. J. Kewley, M. A. Dopita, R. S. Sutherland, C. A. Heisler, and J. Trevena, Astrophys. J. 556, 121 (2001).

    Article  ADS  Google Scholar 

  30. I. Khabibullin, S. Sazonov, and R. Sunyaev, Mon. Not. R. Astron. Soc. 437, 327 (2014).

    Article  ADS  Google Scholar 

  31. S. Komossa, J. Halpern, N. Schartel, G. Hasinger, M. Santos-Lleo, and P. Predehl, Astrophys. J. Lett. 603, L17 (2004).

    Article  ADS  Google Scholar 

  32. F. J. Masci, R. R. Laher, B. Rusholme, D. L. Shupe, S. Groom, J. Surace, et al., Publ. Astron. Soc. Pacif. 131, 018003 (2019).

    Article  ADS  Google Scholar 

  33. P. S. Medvedev, M. R. Gilfanov, and S. Yu. Sazonov, Astron. Lett. (2022, in press).

  34. S. A. Potanin, A. A. Belinski, V. Dodin, S. G. Zheltoukhov, V. Y. Lander, K. A. Postnov, et al., Astron. Lett. 46, 836 (2020).

    Article  ADS  Google Scholar 

  35. P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al., Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  36. A. M. Price-Whelan, P. L. Lim, N. Earl, N. Starkman, L. Bradley, et al. (Astropy Collab.), Astrophys. J. 935, 167 (2022).

    ADS  Google Scholar 

  37. T. Prusti, J. H. J. de Bruijne, G. A. Brown, A. Vallenari, C. Babusiaux, et al. (Gaia Collab.), Astron. Astrophys. 595, A1 (2016).

    Google Scholar 

  38. S. Sazonov, E. Churazov, and R. Krivonos, Mon. Not. R. Astron. Soc. 454, 1202 (2015).

    Article  ADS  Google Scholar 

  39. S. Sazonov, M. Gilfanov, P. Medvedev, Y. Yao, G. Khorunzhev, A. Semena, et al., Mon. Not. R. Astron. Soc. 508, 3820 (2021).

    Article  ADS  Google Scholar 

  40. K. Schawinski, D. Thomas, M. Sarzi, C. Maraston, S. Kaviraj, S.-J. Joo, et al., Mon. Not. R. Astron. Soc. 382, 1415 (2007).

    Article  ADS  Google Scholar 

  41. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  42. D. Stern, R. J. Assef, D. J. Benford, A. Blain, R. Cutri, A. Dey, et al., Astrophys. J. 753, 30 (2012).

    Article  ADS  Google Scholar 

  43. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al., arXiv: 2104.13267 (2021).

  44. Y. Ueda, M. Akiyama, G. Hasinger, T. Miyaji, and M. G. Watson, Astrophys. J. 786, 104 (2014).

    Article  ADS  Google Scholar 

  45. Y. Ueda, Y. Hashimoto, K. Ichikawa, Y. Ishino, A. Y. Kniazev, P. Väisänen, et al., Astrophys. J. 815, 1 (2015).

    Article  ADS  Google Scholar 

  46. S. van Velzen, S. Gezari, E. Hammerstein, N. Roth, S. Frederick, C. Ward, et al., Astrophys. J. 908, 4 (2021).

    Article  ADS  Google Scholar 

  47. T. Wevers, D. R. Pasham, S. van Velzen, J. C. A. Miller-Jones, P. Uttley, K. C. Gendreau, et al., Astrophys. J. 912, 151 (2021).

    Article  ADS  Google Scholar 

  48. E. L. Wright, P. R. M. Eisenhardt, A. K. Mainzer, M. E. Ressler, R. M. Cutri, T. Jarrett, et al., Astron. J. 140, 1868 (2010).

    Article  ADS  Google Scholar 

  49. H. F. M. Yao, T. H. Jarrett, M. E. Cluver, L. Marchetti, E. N. Taylor, M. G. Santos, et al., Astrophys. J. 903, 91 (2020).

    Article  ADS  Google Scholar 

  50. Y. Yao, W. Lu, M. Guolo, D. R. Pasham, S. Gezari, M. Gilfanov, et al., Astrophys. J. 937, 8 (2022).

    Article  ADS  Google Scholar 

  51. A. Zabludoff, I. Arcavi, S. La Massa, H. B. Perets, B. Trakhtenbrot, B. A. Zauderer, et al., Space Sci. Rev. 217, 54 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Khorunzhev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorunzhev, G.A., Sazonov, S.Y., Medvedev, P.S. et al. Search for Tidal Disruption Events Based on the SRG/eROSITA Survey with Subsequent Optical Spectroscopy. Astron. Lett. 48, 767–789 (2022). https://doi.org/10.1134/S1063773723010036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773723010036

Keywords:

Navigation