Skip to main content
Log in

Possible Flight Trajectories to Venus with Landing in a Given Region

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We analyze the use of a promising technique for designing the flight trajectories to Venus with the application of a gravity-assist maneuver and resonant orbits to deliver a lander to regions on the surface of Venus with a high scientific significance where no landing can be made in the classical approach to designing the flight trajectories used in the missions of the Soviet Venera and Vega programs. Within the promising Russian Venera-D mission we consider the landing with the application of the above technique in Vellamo-South and Kutue-South, in which no landing is possible for the launch in 2031 and the classical approach to choosing a landing site. We take into account the constraints imposed by the requirements of accomplishing the flight mission to Venus by a spacecraft consisting of a lander and an orbital module. We show the efficiency of the applied technique both in choosing landing sites for the lander and in choosing an orbit for the orbital module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. By the spacecraft orbit resonant with the planetary orbit in a \(m:n\) ratio (below such a spacecraft orbit will be called \(m:n\) resonant for short) we mean a heliocentric spacecraft orbit, with the ratio of its period to the orbital period of the planet being a rational number \(m/n\).

  2. From 2006 to 2015 the Venera-D project was included in the Federal Space Program, in 2021 the work on the Venera-D project was resumed, and since 2022 the project is maintained exclusively by the RF.

  3. Report of the Venera-D (JSDT) January 31, 2019) http://www.iki.rssi.ru/events/2019/Venera-DPhaseIIFinalReport.pdf (access date September 15, 2022).

  4. The perpendicular drawn from the focus of the hyperbolic spacecraft orbit to the asymptote.

  5. The functional being used to search for optimal trajectories is close to the one being currently used within the Venera-D project or, more specifically, \(\Delta V_{0}+\Delta V_{1}\), where \(\Delta V_{1}\) is the braking impulse for injection into a diurnal hesperocentric orbit (Simonov et al. 2021).

REFERENCES

  1. A. T. Basilevsky, M. A. Ivanov, J. W. Head, M. Aittola, and J. Raitala, Planet. Space Sci. 55, (2007).

  2. P. Beauchamp, M. S. Gilmore, R. J. Lynch, B. V. Sarli, A. Nicoletti, A. Jones, A. Ginyard, and M. E. Segura, in Proceedings of the 2021 IEEE Aerospace Conference (2021), p. 1.

  3. G. K. Borovin, Yu. F. Golubev, A. V. Grushevskii, et al., in Ballistic–Navigational Support for the Flights of Automatic Spacecraft to Solar System Bodies, Ed. by A. G. Tuchin (NPO Lavochkina, Khimki, 2018), p. 336 [in Russian].

  4. V. A. Egorov, Usp. Fiz. Nauk 63, 73 (1957).

    Article  Google Scholar 

  5. N. A. Eismont, L. V. Zasova, A. V. Simonov, et al., Vestn. NPO im. S. A. Lavochkina 11 (4), (2018).

  6. N. A. Eismont, L. V. Zasova, A. V. Simonov, I. D. Kovalenko, D. A. Gorinov, A. S. Abbakumov, and S. A. Bober, Solar Syst. Res. 53, 578 (2019).

    Article  ADS  Google Scholar 

  7. N. A. Eismont, V. V. Koryanov, K. S. Fedyaev, et al., AIP Conf. Proc. 2318, 110012 (2021a).

    Article  Google Scholar 

  8. N. A. Eismont, R. R. Nazirov, K. S. Fedyaev, V. A. Zubko, A. A. Belyaev, L. V. Zasova, D. A. Gorinov, and A. V. Simonov, Astron. Lett. 47, 316 (2021b).

    Article  ADS  Google Scholar 

  9. N. Eismont, V. Zubko, A. Belyaev, et al., Acta Astronaut. 197, 310 (2022).

    Article  ADS  Google Scholar 

  10. P. E. Elyasberg, Introduction to the Theory of Flight of Artificial Earth Satellites (Nauka, Moscow, 1965), p. 460 [in Russian].

    Google Scholar 

  11. J. B. Garvin, S. A. Getty, G. N. Arney, N. M. Johnson, E. Kohler, K. O. Schwer, M. Sekerak, A. Bartels, et al., Planet. Sci. J. 3, 117 (2022).

    Article  Google Scholar 

  12. M. Gilmore, P. M. Beauchamp, R. Lynch, and M. J. Amato, in Planetary Science and Astrobiology Decadal Survey (2020).

    Google Scholar 

  13. J. S. Greaves, A. M. S. Richards, W. Bains, P. B. Rimmer, H. Sagawa, D. L. Clements, S. Seager, et al., Nat. Astron. 5, 655 (2021).

    Article  ADS  Google Scholar 

  14. S. A. Haider, A. Bhardwaj, Shanmugam, et al., in Proceedings of the 42nd COSPAR Scientific Assembly (2018), p. B4-1.

  15. M. A. Ivanov, Geochem. Int. 54 (2016).

  16. M. A. Ivanov, L. V. Zasova, M. V. Gerasimov, O. I. Korablev, M. Ya. Marov, L. M. Zelenyi, N. I. Ignat’ev, and A. G. Tuchin, Solar Syst. Res. 51, 1 (2017).

    Article  ADS  Google Scholar 

  17. M. A. Ivanov, L. Zasova, and T. K. P. Gregg, in Proceedings of the 9th Moscow Solar System Symposium 9M-S3 (2018), p. 58.

  18. M. A. Ivanov, J. W. Head, L. V. Zasova, et al., in Proceedings of the 12th Moscow Solar System Symposium 12M-S3 (2021), p. 109.

  19. V. V. Ivashkin and N. N. Tupitsyn, Kosm. Issled. 9, 163 (1971).

    ADS  Google Scholar 

  20. D. Izzo, Celest. Mech. Dyn. Astron. 121, 1 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  21. A. V. Kosenkova, AIP Conf. Proc. 2318, 140003 (2020).

    Article  Google Scholar 

  22. A. V. Kosenkova, O. Yu. Sedykh, A. V. Simonov, and V. E. Minenko, Vestn. NPO im S. A. Lavochkina 1, 12 (2021).

    Google Scholar 

  23. S. S. Limaye, R. Mogul, D. J. Smith, et al., Astrobiology 18, 1181 (2018).

    Article  ADS  Google Scholar 

  24. O. Montenbruck, E. Gill, and F. Lutze, Appl. Mech. Rev. 55, B27 (2002).

    Article  Google Scholar 

  25. D. Senske, L. Zasova, T. Economou, et al., in Proceedings of the Planetary Science Vision 2050 Workshop (2017), p. 1.

  26. A. V. Simonov, S. D. Kovaleva, E. S. Gordienko, et al., Nauka Innov., 7 (2021).

  27. S. Smrekar, M. Dyar, S. Hensley, et al., in Proceedings of the 48th AAS/Division Planetary Science Meeting (2016), p. 207.

  28. T. Widemann, R. Ghail, C. F. Wilson, and D. V. Titov, in Agu Fall Meeting Abstracts (2020), p. P022.

  29. L. V. Zasova, D. A. Gorinov, N. A. Eismont, et al., Vestn. NPO im. S. A. Lavochkina 13, (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Zubko.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubko, V.A. Possible Flight Trajectories to Venus with Landing in a Given Region. Astron. Lett. 48, 806–819 (2022). https://doi.org/10.1134/S1063773722110123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722110123

Keywords:

Navigation