Skip to main content
Log in

Study of the X-ray Pulsar IGR J21343+4738 Based on NuSTAR, Swift, and SRG Data

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the results of our study of the X-ray pulsar IGR J21343+4738 based on NuSTAR, Swift, and SRG observations in the wide energy range 0.3–79 keV. The absence of absorption features in the energy spectra of the source, both averaged and phase-resolved ones, has allowed us to estimate the upper and lower limits on the magnetic field of the neutron star in the binary system, \(B<2.5\times 10^{11}\) and \(B>3.4\times 10^{12}\) G, respectively. Our spectral and timing analyses have shown that IGR J21343+4738 has all properties of a quasi-persistent X-ray pulsar with a pulsation period of \(322.71\pm{0.04}\) s and a luminosity \(L_{x}\simeq 3.3\times 10^{35}\) erg s\({}^{-1}\). Our analysis of the long-term variability of the object in X-rays has confirmed the possible orbital period of the binary system \({\sim}34.3\) days previously detected in the optical range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. http://www.swift.ac.uk/user_objects/

REFERENCES

  1. K. Arnaud, B. Dorman, and C. Gordon, Astrophys. Source Code Libr., 10005 (1999).

  2. N. Ben Bekhti, L. Floer, et al. (HI4PI Collab.) Astron. Astrophys. 594, A116 (2016).

    Google Scholar 

  3. I. F. Bikmaev, R. A. Burenin, M. G. Revnivtsev, S. Yu. Sazonov, R. A. Sunyaev, M. N. Pavlinsky, and N. A. Sakhibullin, Astron. Lett. 34, 10 (2008).

    Article  Google Scholar 

  4. A. J. Bird, A. Malizia, A. Bazzano, E. J. Barlow, L. Bassani, A. B. Hill, G. Belanger, F. Capitanio, et al., Astrophys. J. Suppl. Ser. 170, 175 (2007).

    Article  ADS  Google Scholar 

  5. P. A. Boldin, S. S. Tsygankov, and A. A. Lutovinov, Astron. Lett. 39, 375 (2013).

    Article  ADS  Google Scholar 

  6. D. N. Burrows, J. E. Hill, J. A. Nousek, J. A. Kennea, A. Wells, J. P. Osborne, A. F. Abbey, A. Beardmore, et al., Space Sci. Rev. 120, 165 (2005).

    Article  ADS  Google Scholar 

  7. P. A. Evans, A. P. Beardmore, K. L. Page, et al., Mon. Not. R. Astron. Soc. 397, 1177 (2009).

    Article  ADS  Google Scholar 

  8. N. Gehrels, G. Chincarini, P. Giommi, K. O. Mason, J. A. Nousek, A. A. Wells, N. E. White, S. D. Barthelmy, et al., Astrophys. J. 611, 1005 (2004).

    Article  ADS  Google Scholar 

  9. F. A. Harrison, W. W. Craig, F. E. Christensen, et al., Astrophys. J. 770, 103 (2013).

    Article  ADS  Google Scholar 

  10. P. Kretschmar, F. Fürst, L. Sidoli, et al., New Astron. Rev. 86, 101546 (2019).

    Article  Google Scholar 

  11. R. Krivonos, M. Revnivtsev, A. Lutovinov, S. Sazonov, E. Churazov, and R. Sunyaev, Astron. Astrophys. 475, 2 (2007).

    Article  Google Scholar 

  12. J. Li, D. F. Torres, S. Zhang, A. Papitto, Yu. Chen, and J.-M. Wang, Astrophys. J. 761, 1 (2012).

    Article  Google Scholar 

  13. A. A. Lutovinov and S. S. Tsygankov, Astron. Lett. 35, 433 (2009).

    Article  ADS  Google Scholar 

  14. S. Molkov, A. Lutovinov, S. Tsygankov, I. Mereminskiy, and A. Mushtukov, Astrophys. J. 883, L11 (2019).

    Article  ADS  Google Scholar 

  15. S. Molkov, V. Doroshenko, A. Lutovinov, S. Tsygankov, A. Santangelo, I. Mereminskiy, and A. Semena, Astrophys. J. Lett. 915, 2 (2021).

    Article  Google Scholar 

  16. A. Mushtukov and S. Tsygankov, arXiv: 2204.14185 (2022).

  17. E. A. Nikolaeva et al., in Proceedings of the MOBSTER-1 Virtual Conference, July 12–17, 2020 (2021), ID 25. http://heaconf.cosmos.ru/heaconf/hea/2021/hea/ talk/801/

  18. M. Pavlinsky, A. Tkachenko, V. Levin, et al., Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  19. H. Qiu, P. Zhou, W. Yu, X. Li, and X. Xu, Astrophys. J. 847, 1 (2017).

    Article  Google Scholar 

  20. P. Reig, Astrophys. Space Sci. 332, 1 (2011).

    Article  ADS  Google Scholar 

  21. P. Reig and A. Zezas, Astron. Astrophys. 561, A13 (2014).

    Article  Google Scholar 

  22. S. Sazonov, M. Revnivtsev, R. Burenin, E. Churazov, R. Sunyaev, W. R. Forman, and S. S. Murray, Astron. Astrophys. 487, 2 (2008).

    Article  Google Scholar 

  23. A. Semena, A. Lutovinov, I. Mereminskiy, S. Molkov, I. Lapshov, and A. Tkachenko, Astron. Telegram 14247, 1 (2020).

    ADS  Google Scholar 

  24. N. Shakura, K. Postnov, A. Kochetkova, and L. Hjalmarsdotter, Mon. Not. R. Astron. Soc. 420, 216 (2012).

    Article  ADS  Google Scholar 

  25. R. Staubert, J. Trumper, E. Kendziorra, et al., Astron. Astrophys. 622, A61 (2019).

    Article  Google Scholar 

  26. R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, et al., Astron. Astrophys. 656, A132 (2021).

    Article  Google Scholar 

  27. S. S. Tsygankov and A. A. Lutovinov, Astron. Lett. 31, 380 (2005).

    Article  ADS  Google Scholar 

  28. S. S. Tsygankov, R. A. Krivonos, and A. A. Lutovinov, Mon. Not. R. Astron. Soc. 421, 3 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Gorban.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorban, A.S., Molkov, S.V., Lutovinov, A.A. et al. Study of the X-ray Pulsar IGR J21343+4738 Based on NuSTAR, Swift, and SRG Data. Astron. Lett. 48, 798–805 (2022). https://doi.org/10.1134/S106377372211007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377372211007X

Keywords:

Navigation