Skip to main content
Log in

The Influence of the Effective Number of Active and Sterile Neutrinos on the Determination of the Values of Cosmological Parameters

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Neutrino, as the second most abundant known particle in the Universe, has a significant impact on its expansion rate during the radiation- and matter-dominated eras. For this reason, a change in the number of neutrino species can lead to substantial changes in the estimates of cosmological parameters, the most accurate values of which, at the moment, are obtained by analysing the anisotropy of the CMB. In the presented work we consider the influence of a hypothetical sterile neutrino (with eV-scale mass) on the determination of cosmological parameters. The possible existence of such neutrino is suggested by the analysis of a series of different experiments. If it is detected, it will be necessary to include it into the \(\Lambda\rm CDM\) model with the fixed values of its mass \(m_{\rm s}\) and mixing angle \(\theta_{s}\), which is the main method used through this paper. Apart from that, the seesaw mechanism requires there to be at least two sterile states, one of them being much heavier than the active ones. The heavier sterile state (\(m_{s}\sim 1\) keV) would decay and increase the effective number of active neutrinos. Therefore, the influence of a change in the effective number of relativistic neutrino species \(N_{\textrm{eff}}\) was studied as well, which could be caused by various reasons, for example, by the decay processes of dark matter particles or the above-mentioned sterile neutrinos, as well as processes leading to an increase in the temperature of relic neutrinos \(T_{\textrm{C}\nu\textrm{B}}\). The effects studied in this work lead to a significant change in the estimates of the cosmological parameters, including the value of \(H_{0}\). It has been discovered that the accounting of the sterile neutrino with masses \(m=1\) and \(2.7\) eV leads to a decrease in the estimate of the current Hubble parameter value \(H_{0}\) and, therefore, exacerbates the ‘‘\(H_{0}\)-tension’’ problem. An increase in the value of the effective number of relativistic neutrino species leads, on the contrary, to an increase in the \(H_{0}\) estimate, resolving the above-mentioned problem at \(N_{\textrm{eff}}=3.0+0.9\), which is equivalent to an increase of the neutrino temperature up to \(T^{0}_{\textrm{C}\nu\textrm{B}}=1.95+0.14\) K. At the same time, the rest of the cosmological parameters do not change significantly, leaving us within the framework of the standard \(\Lambda\)CDM model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. This refers to equilibrium relic neutrinos described by the Fermi-Dirac distribution. There also exist nonequilibrium relic neutrinos of primordial nucleosynthesis (see, for example, Ivanchik and Yurchenko 2018; Yurchenko and Ivanchik 2021).

  2. The index \(TT\) indicates that the correlation function of two temperature values is being considered. In addition to it, two more correlation functions associated with the polarization of CMB are often introduced. These are also used in the current work, but are not mentioned here for the sake of brevity.

  3. This paper is based on observations obtained with Planck (http://www.esa.int/Planck), an ESA science mission with instruments and contributions directly funded by ESA Member States, NASA, and Canada. Planck collaboration archive link: https://pla.esac.esa.int.

  4. The key cosmological equations used in this paper are presented, for example, in monographs by Weinberg (2008) and Gorbunov and Rubakov (2016).

  5. The \(0.046\) correction results from the additional heating of neutrinos during electron-positron annihilation (see, e.g., Mangano et al. 2005).

  6. As noted in the previous section, the addition of another neutrino to the standard \(\Lambda\)CDM model will affect the estimates of the main cosmological parameters (in particular, \(\theta_{*},\omega_{\textrm{c}dm},\omega_{\textrm{b}}\)). In this section their variations are not considered.

  7. https://pla.esac.esa.int

REFERENCES

  1. N. Allemandou, H. Almazan, P. del Amo Sanchez, L. Bernard, C. Bernard, A. Blanchet, A. Bonhomme, G. Bosson, et al., J. Instrum. 13, 07 (2018).

  2. J. Ashenfelter, A. B. Balantekin, C. Baldenegro, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 922, 287 (2019).

    Google Scholar 

  3. S. A. Balashev, E. O. Zavarygin, A. V. Ivanchik, K. N. Telikova, and D. A. Varshalovich, Mon. Not. R. Astron. Soc. 458, 2188 (2016).

    Article  ADS  Google Scholar 

  4. S. M. Bilenky and B. Pontecorvo, Sov. J. Nucl. Phys. 24, 316 (1976).

    Google Scholar 

  5. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, Ann. Rev. Nucl. Part. Sci. 59, 191 (2009).

    Article  ADS  Google Scholar 

  6. M. Cirelli, G. Corcella, A. Hektor, G. Hütsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, and A. Strumia, J. Cosmol. Astropart. Phys. 1103, 051 (2011).

  7. M. Danilov, arXiv: 2012.10255 (2020).

  8. S. Dasgupta and J. Kopp, Phys. Rep. 928, 1 (2021).

    Article  ADS  Google Scholar 

  9. D. J. Fixen, Astrophys. J. 707, 916 (2009).

    Article  ADS  Google Scholar 

  10. S. Gariazzo, C. Giunti, M. Laveder, and Y. F. Li, J. High Energy Phys. 6, 135 (2017).

    Article  ADS  Google Scholar 

  11. D. S. Gorbunov and V. A. Rubakov, Introduction to the Early Universe Theory. Hot Big Bang Theory (World Sci., Singapore, 2011a; LENAND, Moscow, 2016), Vol. 1.

  12. D. S. Gorbunov and V. A. Rubakov, Introduction to the Early Universe Theory. Cosmological Perturbations and Inflationary Theory (World Sci., Singapore, 2011b; LENAND, Moscow, 2016), Vol. 2.

  13. A. V. Ivanchik and V. Yu. Yurchenko, Phys. Rev. D 98, 081301 (2018).

    Article  ADS  Google Scholar 

  14. O. A. Kurichin, P. A. Kislitsyn, V. V. Klimenko, S. A. Balashev, and A. V. Ivanchik, Mon. Not. R. Astron. Soc. 502, 3045 (2021a).

    Article  ADS  Google Scholar 

  15. O. A. Kurichin, P. A. Kislitsyn, and A. V. Ivanchik, Astron. Lett. 47, 674 (2021b).

    Article  ADS  Google Scholar 

  16. O. Lahav and A. R. Liddle, arXiv: 1912.03687 (2019).

  17. A. Lewis, A. Challinor, and A. Lasenby, Astrophys. J. 538, 473 (2000).

    Article  ADS  Google Scholar 

  18. G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and P. D. Serpico, Nucl. Phys. B 729, 221 (2005).

    Article  ADS  Google Scholar 

  19. G. Mention, M. Fechner, Th. Lasserre, et al., Phys. Rev. D 83, 073006 (2011).

    Article  ADS  Google Scholar 

  20. P. Minkowski, Phys. Lett. B 67, 421 (1997).

    Article  ADS  Google Scholar 

  21. Th. A. Mueller, D. Lhuillier, M. Fallot, et al., Phys. Rev. 83, 054615 (2011).

    Article  Google Scholar 

  22. NEOS Collab., Phys. Rev. Lett. 118, 121802 (2017).

    Article  Google Scholar 

  23. Planck Collab., Astron. Astrophys. A6, 641 (2020).

    Google Scholar 

  24. A. G. Riess, W. Yuan, L. M. Macri, et al., arXiv: 2112.04510 (2022).

  25. A. P. Serebrov, R. M. Samoilov, V. G. Ivochkin, et al., Phys. Rev. D 104, 032003 (2021).

    Article  ADS  Google Scholar 

  26. SNO Collab., Phys. Rev. C 88, 025501 (2013).

    Article  ADS  Google Scholar 

  27. Super-Kamiokande Collab., Phys. Rev. Lett. 82, 2430 (1999).

    Article  Google Scholar 

  28. J. Torrado and A. Lewis, J. Cosmol. Astropart. Phys. 05, 057 (2021).

  29. S. Weinberg, Cosmology (Oxford Univ. Press, New York, 2008).

    MATH  Google Scholar 

  30. V. Yu. Yurchenko and A. V. Ivanchik, Astropart. Phys. 127, 102537 (2021).

    Article  Google Scholar 

  31. P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 083C01 (2020).

Download references

Funding

This work was supported by a grant from the Russian Science Foundation no. 18-12-00301.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Chernikov.

Additional information

Translated by the authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernikov, P.A., Ivanchik, A.V. The Influence of the Effective Number of Active and Sterile Neutrinos on the Determination of the Values of Cosmological Parameters. Astron. Lett. 48, 689–701 (2022). https://doi.org/10.1134/S1063773722110056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722110056

Keywords:

Navigation