Skip to main content
Log in

SRGe J214919.3+673634—a Candidate for AM Her Variables Discovered by the eROSITA Telescope onboard the Spectrum–Roentgen–Gamma Orbital Observatory

  • Published:
Astronomy Letters Aims and scope Submit manuscript


We present the results of the optical identification, classification, and analysis of our photometric and spectroscopic observations of the X-ray transient SRGe J214919.3+673634 discovered by the eROSITA telescope onboard the Spectrum–Roentgen–Gamma orbital observatory in the summer of 2021 during the fourth sky survey. The photometric observations of the optical counterpart of SRGe J214919.3+673634 performed at the 6-m BTA telescope of SAO RAS, the 1.5-m Russian–Turkish telescope RTT-150, and the 2.5-m telescope of CMO SAI MSU as well the archival data from the 48-inch ZTF telescope have shown that the source is a cataclysmic variable with an orbital period \(P=85\pm 0.4\) min and exhibits a long-term photometric variability from \(23.5^{m}\) (low state) to \(20^{m}\) (high state). We show that the light curves in the high state are consistent with the model of an accreting magnetized white dwarf and suggest that SRGe J214919.3+673634 belongs to the AM Her variables. The spectra of the optical counterpart taken in the low state at BTA are consistent with the spectral energy distribution of a white dwarf with a temperature \({\sim}24\,000\) K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. More detailed information about the detector is accessible at

  2. The astronomical data reduction and analysis package was developed by the National Optical Astronomy Observatories and is accessible at


  1. V. L. Afanasiev and A. V. Moiseev, Baltic Astron. 20, 363 (2011).

    ADS  Google Scholar 

  2. I. Afanasieva, V. Ardilanov, V. Murzin, N. Ivaschenko, M. Pritychenko, A. Moiseev, E. Shablovinskaya, and E. Malygin, Exp. Astron. (2023, submitted).

  3. G. Chanmugam and G. A. Dulk, Astrophys. J. 244, 569 (1981).

    Article  ADS  Google Scholar 

  4. P. Charbonneau, Astrophys. J. Suppl. Ser. 101, 309 (1995).

    Article  ADS  Google Scholar 

  5. M. Cropper, Space Sci. Rev. 54, 195 (1990).

    Article  ADS  Google Scholar 

  6. J. H. Debes, M. López-Morales, A. Z. Bonanos, and A. J. Weinberger, Astrophys. J. 647, 147 (2006).

    Article  ADS  Google Scholar 

  7. P. G. van Dokkum, Publ. Astron. Soc. Pacif. 113, 1420 (2001).

    Article  ADS  Google Scholar 

  8. O. V. Egorov and A. V. Moiseev, Mon. Not. R. Astron. Soc. 20, 363 (2011).

    Google Scholar 

  9. B. T. Gänsicke, M. Dillon, J. Southworth, J. R. Thorstensen, P. Rodríguez-Gil, A. Aungwerojwit, T. R. Marsh, P. Szkody, et al., Mon. Not. R. Astron. Soc. 397, 2170 (2009).

    Article  ADS  Google Scholar 

  10. A. R. King and J. K. Cannizzo, Astrophys. J. 499, 348 (1998).

    Article  ADS  Google Scholar 

  11. S. Knigge, I. Baraffe, and J. Patterson, Astrophys. J. Suppl. Ser. 194, 28 (2011).

    Article  ADS  Google Scholar 

  12. A. I. Kolbin and N. V. Borisov, Astron. Lett. 46, 812 (2020).

    Article  ADS  Google Scholar 

  13. A. I. Kolbin, N. V. Borisov, N. A. Serebriakova, V. V. Shimansky, N. A. Katysheva, M. M. Gabdeev, and S. Yu. Shugarov, Mon. Not. R. Astron. Soc. 511, 20 (2022).

    Article  ADS  Google Scholar 

  14. F. Marocco, P. Eisenhardt, J. Fowler, J. Kirkpatrick, A. Meisner, E. Schlafly, S. Stanford, N. Garcia, et al., Astrophys. J. Suppl. Ser. 253, 8 (2021).

    Article  ADS  Google Scholar 

  15. F. Masci, R. Laher, B. Rusholme, D. L. Shupe, S. Groom, J. Surace, E. Jackson, S. Monkewitz, et al., Publ. Astron. Soc. Pacif. 131, 995 (2018).

    Google Scholar 

  16. V. S. Menzhevitski, N. N. Shimanskaya, V. V. Shimansky, and D. O. Kudryavtsev, Astrophys. Bull. 69, 169 (2014).

    Article  ADS  Google Scholar 

  17. A. A. Mitrofanova, N. V. Borisov, and V. V. Shimansky, Astrophys. Bull. 69, 82 (2014).

    Article  ADS  Google Scholar 

  18. J. Patterson, Publ. Astron. Soc. Pacif. 106, 209 (1994).

    Article  ADS  Google Scholar 

  19. M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babushkin, O. Batanov, Yu. Bodnar, et al., Astron. Astrophys. 650, A42 (2021).

    Article  Google Scholar 

  20. J. T. van der Plas, Astrophys. J. Suppl. Ser. 236, 16 (2018).

    Article  ADS  Google Scholar 

  21. P. Predehl, R. Andritschke, V. Arefiev, V. Babushkin, O. Batanov, W. Becker, H. Becker, H. Boehringer, et al., Astron. Astrophys. 647, A1 (2021).

    Article  Google Scholar 

  22. S. Sazonov, M. Gilfanov, P. Medvedev, Y. Yao, G. Khorunzhev, A. Semena, R. Sunyaev, R. Burenin, et al., Mon. Not. R. Astron. Soc. 508, 3820 (2021).

    Article  ADS  Google Scholar 

  23. A. D. Schwope, and S. Mengel, Astron. Nachr. 318, 25 (1997).

    Article  ADS  Google Scholar 

  24. J.-E. Solheim, Publ. Astron. Soc. Pacif. 122, 1133 (2010).

    Article  ADS  Google Scholar 

  25. R. Sunyaev, V. Arefiev, V. Babyshkin, et al., Astron. Astrophys. 656, A132 (2021).

    Article  Google Scholar 

  26. C. R. Vidal, J. Cooper, and E. W. Smith, Astrophys. J. Suppl. Ser. 25, 37 (1973).

    Article  ADS  Google Scholar 

  27. T. Wada, A. Shimizu, M. Suzuki, M. Kato, and R. Hoshi, Prog. Theor. Phys. 64, 1986 (1980).

    Article  ADS  Google Scholar 

  28. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  29. M. Zorotovic, M. R. Schreiber, and B. T. Gänsicke, Astron. Astrophys. 536, 42 (2011).

    Article  ADS  Google Scholar 

Download references


We are grateful to TÜBITAK, the Space Research Institute, the Kazan Federal University, and the Academy of Sciences of Tatarstan for their partial support in using RTT-150 (the 1.5-m Russian–Turkish telescope in Antalya). The observations at the SAO RAS telescopes are supported by the Ministry of Science and Higher Education of the Russian Federation. The instrumentation is upgraded within the ‘‘Science and Universities’’ National Project.

Part of our study was supported by the Russian Foundation for Basic Research (project no. 19-32-60048). The photometric observations at RTT-150 and the 2.5-m CMO SAI MSU telescope and their primary reduction were supported by RSF no 21-12-00210 (I.F. Bikmaev, E.N. Irtuganov, E.A. Nikolaeva, and S.G. Zheltoukhov). The work of N.A. Sakhibullin, R.I. Gumerov, and I.M. Khamitov was financed by subsidy no. 671-2020-0052 of the Ministry of Education and Science of the Russian Federation allocated to the Kazan Federal University for the State assignment in the sphere of scientific activities.

This study is based on observations with the eROSITA telescope onboard the SRG observatory. The SRG observatory was built by Roskosmos in the interests of the Russian Academy of Sciences represented by the Space Research Institute (IKI) within the framework of the Russian Federal Space Program, with the participation of the Deutsches Zentrum für Luft- und Raumfahrt (DLR). The SRG/eROSITA X-ray telescope was built by a consortium of German institutes led by MPE, and supported by DLR. The SRG spacecraft was designed, built, launched and is operated by the Lavochkin Association and its subcontractors. The science data are downlinked via the Deep Space Network Antennae in Bear Lakes, Ussurijsk, and Baykonur, funded by Roskosmos. The eROSITA data used in this paper were processed with the eSASS software developed by the German eROSITA consortium and the proprietary data reduction and analysis software developed by the Russian eROSITA Consortium.

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. F. Bikmaev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikmaev, I.F., Kolbin, A.I., Shimansky, V.V. et al. SRGe J214919.3+673634—a Candidate for AM Her Variables Discovered by the eROSITA Telescope onboard the Spectrum–Roentgen–Gamma Orbital Observatory. Astron. Lett. 48, 530–541 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: