Skip to main content
Log in

On the Definition of the Astrocentric Coordinates in the Planetary Problem

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Two ways of defining the Poincaré astrocentric coordinates in the planetary problem are considered and compared. Both ways are shown to lead to the same system of equations of planetary motion after the elimination of the center of mass. Formulas for the transition from the osculating elements in the Poincaré coordinate system to the ordinary astrocentric osculating elements are given. The analytical apparatus constructed here is suitable for the practical application of perturbation methods, in particular, averaging methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In contrast to the Poincaré coordinates, the Jacobi coordinates require expanding the perturbing potential of the system into a series in powers of planetary masses. However, as Charlier (1927) rightly pointed out, this shortcoming of the Jacobi coordinates is insignificant when constructing planetary theories.

  2. The complementary part of the disturbing function appears in the theory of the second and higher orders in planetary masses.

REFERENCES

  1. C. L. Charlier, Die Mechanik des Himmels (Walter de Gruyter, Berlin, 1927).

    Book  Google Scholar 

  2. M. J. Duncan, H. F. Levison and M. H. Lee, Astron. J. 116, 2067 (1998).

    Article  ADS  Google Scholar 

  3. N. V. Emel’yanov, Foundations of the Perturbation Theory in Celestial Mechanics, the Tutorial (Mosk. Gos. Univ., Moscow, 2015) [in Russian].

    Google Scholar 

  4. S. Ferraz-Mello, T. A. Micchtchenko, and C. Beaugé, in Chaotic Worlds: From Order to Disorder in Gravitational N-Body Dynamical Systems, Ed. by B. A. Steves, A. J. Maciejewski, and M. Hendry (Springer, New York, 2006), p. 255.

    Google Scholar 

  5. K. V. Kholshevnikov and V. B. Titov, The Two-Body Problem, the Tutorial (SPb Gos. Univ., St. Petersburg, 2007) [in Russian].

  6. K. V. Kholshevnikov, A. V. Greb, and E. D. Kuznetsov, Solar System. Res. 35, 243 (2001).

    Article  ADS  Google Scholar 

  7. G. A. Krasinskii, in Small Planets, Collection of Articles, Ed. by N. S. Samoilova-Yakhontova (Nauka, Moscow, 1973), p. 81 [in Russian].

    Google Scholar 

  8. J. Laskar and P. Robutel, Celest. Mech. Dyn. Astron. 62, 193 (1995).

    Article  ADS  Google Scholar 

  9. A. P. Markeev, Theoretical Mechanics (Regulyar. Khaotich. Dinamika, Izhevsk, 2001) [in Russian].

    Google Scholar 

  10. A. V. Mel’nikov, V. V. Orlov, and I. I. Shevchenko, Astron. Rep. 58, 640 (2014).

    Article  ADS  Google Scholar 

  11. D. V. Mikryukov, Astron. Lett. 42, 555 (2016).

    Article  ADS  Google Scholar 

  12. D. V. Mikryukov, Astron. Lett. 44, 337 (2018).

    Article  ADS  Google Scholar 

  13. D. V. Mikryukov, Astron. Lett. 46, 344 (2020).

    Article  ADS  Google Scholar 

  14. D. V. Mikryukov and K. V. Kholshevnikov, Astron. Lett. 42, 268 (2016).

    Article  ADS  Google Scholar 

  15. A. Morbidelli, Modern Celestial Mechanics: Aspects of Solar System Dynamics (Taylor Francis, London, 2002).

    MATH  Google Scholar 

  16. H. Poincaré, Leçons de Mécanique Céleste, tome I (Gauthier-Villars, Paris, 1905).

    MATH  Google Scholar 

  17. H. Rein, D. M. Hernandez, D. Tamayo, G. Brown, E. Eckels, E. Holmes, M. Lau, R. Leblanc, and A. Silburt, Mon. Not. R. Astron. Soc. 485, 5490 (2019).

    Article  ADS  Google Scholar 

  18. P. Robutel, L. Niederman, and A. Pousse, Comput. Appl. Math. 35, 675 (2016).

    Article  MathSciNet  Google Scholar 

  19. A. Rodríguez and T. Gallardo, Astrophys. J. 628, 1006 (2005).

    Article  ADS  Google Scholar 

  20. A. Wintner, The Analytical Foundations of Celestial Mechanics (Princeton Univ. Press, Princeton, 1941).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to K.V. Kholshevnikov (1939–2021) for the proposed theme. I also thank the anonymous referee for the useful remarks that contributed to an improvement of the paper.

Funding

This work was financially supported by the Russian Science Foundation (project no. 19-72-10023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Mikryukov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikryukov, D.V. On the Definition of the Astrocentric Coordinates in the Planetary Problem. Astron. Lett. 47, 782–789 (2021). https://doi.org/10.1134/S1063773721110049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721110049

Keywords:

Navigation