Skip to main content
Log in

Determination of H II Region Metallicity in the Context of Estimating the Primordial Helium Abundance

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The primordial \({}^{4}\)He abundance (Y\({}_{p}\)) is one of the key characteristics of Primordial Nucleosynthesis processes that occurred in the first minutes after the Big Bang. Its value depends on the baryon/photon ratio \(\eta\equiv n_{b}/n_{\gamma}\), and is also sensitive to the relativistic degrees of freedom which affect the expansion rate of the Universe at the radiation-dominated era. At the moment, the most used method of the determination of Y\({}_{p}\) is the study of the metal deficient H II regions located in blue compact dwarf galaxies (BCDs). In this paper, we discuss in detail various methods of the determination of H II region metallicity in the context of Y\({}_{p}\) analyses. We show that some procedures used in the methods lead to biases in the metallicity estimates and underestimation of their uncertainties. We propose a modified method for the metallicity determination, as well as an additional criterion for selecting objects. We have selected 69 objects (26 objects with high quality spectra from the HeBCD+NIR database and 43 objects from the SDSS catalog), for which we estimate Y and O/H using the proposed method. We have estimated Y\({}_{p}=0.2470\pm 0.0020\) which is one of the most accurate estimates obtained up to date. Its comparison with the value Y\({}_{p}=0.2470\pm 0.0002\) obtained as a result of numerical modelling of Primordial Nucleosynthesis with the value of \(\Omega_{b}\) taken from the analysis of the CMB anisotropy (Planck mission), is an important tool for studying the self-consistency of the Standard cosmological model (a possible discrepancy between these estimates could be an indicator of a new physics). The application of the proposed method allows one to more correctly estimate Y\({}_{p}\) and the slope \(d\)Y/\(d\)(O/H). Further analysis of the data from the SDSS catalog can significantly increase the statistics of objects for the regression analysis, which in turn can refine the Y\({}_{p}\) estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. D. S. Aguado, R. Ahumada, A. Almeida, S. F. Anderson, B. H. Andrews, B. Anguiano, E. Aquino Ortíz, A. Aragón-Salamanca, et al., Astrophys. J. Suppl. 240, 23 (2019).

    Article  Google Scholar 

  2. E. Aver, K. A. Olive, and E. D. Skillman, J. Cosmol. Astropart. Phys. 07, 011 (2015).

  3. E. Aver, D. A. Berg, K. A. Olive, R. W. Pogge, J. J. Salzer, and E. D. Skillman, J. Cosmol. Astropart. Phys. 03, 027 (2021).

  4. S. A. Balashev, E. O. Zavarygin, A. V. Ivanchik, K. N. Telikova, and D. A. Varshalovich, Mon. Not. R. Astron. Soc. 458, 2188 (2016).

    Article  ADS  Google Scholar 

  5. R. J. Cooke and M. Fumagalli, Nat. Astron. 2, 957 (2018).

    Article  ADS  Google Scholar 

  6. R. J. Cooke, M. Pettini, and C. C. Steidel, Astrophys. J. 855, 102 (2018).

    Article  ADS  Google Scholar 

  7. V. Fernández, E. Terlevich, A. I. Díaz, R. Terlevich, and F. F. Rosales-Ortega, Mon. Not. R. Astron. Soc. 478, 5301 (2018).

    Article  ADS  Google Scholar 

  8. V. Fernández, E. Terlevich, A. I. Díaz, and R. Terlevich, Mon. Not. R. Astron. Soc. 487, 3221 (2019).

    Article  ADS  Google Scholar 

  9. G. F. Hädgele, E. Pérez-Montero, A. I. Díaz, E. Terlevich, and R. Terlevich, Mon. Not. R. Astron. Soc. 372, 293 (2006).

    Article  ADS  Google Scholar 

  10. G. F. Hädgele, A. I. Díaz, E. Terlevich, et al., Mon. Not. R. Astron. Soc. 383, 209 (2007).

    Article  ADS  Google Scholar 

  11. T. Hsyu, R. J. Cooke, J. X. Prochaska, and M. Bolte, Astrophys. J. 896, 77 (2020).

    Article  ADS  Google Scholar 

  12. Y. I. Izotov, T. X. Thuan, and V. A. Lipovetsky, Astrophys. J. 435, 647 (1994).

    Article  ADS  Google Scholar 

  13. Y. I. Izotov, G. Stasińska, G. Meynet, N. G. Guseva, and T. X. Thuan, Astron. Astrophys. 448, 955 (2006).

    Article  ADS  Google Scholar 

  14. Y. I. Izotov, T. X. Thuan, and G. Stasiń ska, Astrophys. J. 662, 15 (2007).

    Article  ADS  Google Scholar 

  15. Y. I. Izotov, T. X. Thuan, and N. G. Guseva, Mon. Not. R. Astron. Soc. 445, 778 (2014).

    Article  ADS  Google Scholar 

  16. O. A. Kurichin, P. A. Kislitsyn, V. V. Klimenko, S. A. Balashev, and A. V. Ivanchik, Mon. Not. R. Astron. Soc. 502, 3045 (2021).

    Article  ADS  Google Scholar 

  17. V. Luridiana, C. Morisset, and R. A. Shaw, Astron. Astrophys. 573, A42 (2015).

    Article  ADS  Google Scholar 

  18. P. Noterdaeme, S. López, V. Dumont, C. Ledoux, P. Molaro, and P. Petitjean, Astron. Astrophys. 542, L33 (2012).

    Article  ADS  Google Scholar 

  19. B. E. J. Pagel, E. A. Simonson, R. J. Terlevich, and M. G. Edmunds, Mon. Not. R. Astron. Soc. 255, 325 (1992).

    Article  ADS  Google Scholar 

  20. A. Peimbert, M. Peimbert, and V. Luridiana, Rev. Mex. Astron. Astrofis. 52, 419 (2016).

    ADS  Google Scholar 

  21. E. Pérez-Montero, Publ. Astron. Soc. Pacif. 129, 974 (2017).

    Article  Google Scholar 

  22. E. Pérez-Montero and A. I. Díaz, Mon. Not. R. Astron. Soc. 346, 105 (2003).

    Article  ADS  Google Scholar 

  23. L. S. Pilyugin, J. M. V’ılchez, B. Cedres, and T. X. Thuan, Mon. Not. R. Astron. Soc. 403, 896 (2010).

    Article  ADS  Google Scholar 

  24. Planck Collab. et al., Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  25. S. Riemer-Sørensen, S. Kotuš, J. K. Webb, K. Ali, V. Dumont, M. T. Murphy, and R. F. Carswell, Mon. Not. R. Astron. Soc. 468, 3239 (2017).

  26. E. D. Skillman, J. J. Salzer, D. A. Berg, R. W. Pogge, N. C. Haurberg, J. M. Cannon, E. Aver, K. A. Olive, et al., Astron. J. 146, 3 (2013).

    Article  ADS  Google Scholar 

  27. A. P. Tsivilev, V. V. Krasnov, and S. V. Logvinenko, Astron. Lett. 45, 1 (2019).

    Article  Google Scholar 

  28. M. Valerdi and A. Peimbert, arXiv: 1905.05102 (2019).

  29. M. Valerdi, A. Peimbert, and M. Peimbert, Mon. Not. R. Astron. Soc. 505, 3624 (2021).

    Article  ADS  Google Scholar 

  30. E. O. Zavarygin, J. K. Webb, V. Dumont, and S. Riemer-Sørensen, Mon. Not. R. Astron. Soc. 477, 5536 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is supported by the Russian Science Foundation (grant 18-12-00301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Kurichin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurichin, O.A., Kislitsyn, P.A. & Ivanchik, A.V. Determination of H II Region Metallicity in the Context of Estimating the Primordial Helium Abundance. Astron. Lett. 47, 674–685 (2021). https://doi.org/10.1134/S1063773721100054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721100054

Keywords:

Navigation