Skip to main content

Estimation of the Cosmic Microwave Background Temperature from Atomic C I and Molecular CO Lines in the Interstellar Medium of Early Galaxies

Abstract

The linear increase of the cosmic microwave background (CMB) temperature with cosmological redshift, \(T_{\textrm{CMB}}=T_{{0}}(1+z)\), is a prediction of the standard cosmological \(\Lambda\)CDM model. There are currently two methods to measure this dependence at redshift \(z>0\) and, what is equally important, to estimate of the CMB temperature \(T_{0}\) at the present epoch. The first method is based on the Sunyaev–Zeldovich effect for a galaxy cluster. However, this method is limited to redshifts \(z\lesssim 1\) and only the deviations from the standard relation can be measured with it. The second method is based on the analysis of the populations of atomic and molecular energy levels observed in the absorption spectra of quasars. This method allows \(T_{\textrm{CMB}}(z)\) to be measured directly. We present new estimates of \(T_{\textrm{CMB}}(z_{i})\) in the redshift range \(1.7\leq z_{i}\leq 3.3\) based on the analysis of the excitation of CO rotational levels and C I fine-structure levels in 15 absorption systems. We take into account the collisional excitation of CO and C I with hydrogen atoms and \(\textrm{H}_{2}\) and the radiative pumping of C I by the interstellar ultraviolet radiation. Applying this corrections leads to a systematic decrease in the previously obtained estimates of \(T_{\textrm{CMB}}(z_{i})\) (for some systems the magnitude of the effect is \({\sim}10\%\)). Combining our measurements with the measurements of \(T_{\textrm{CMB}}(z)\) in galaxy clusters we have obtained a constraint on the parameter \(\beta=+0.010\pm 0.013\), which characterizes the deviation of the CMB temperature from the standard relation, \(T_{\textrm{CMB}}=T_{{0}}(1+z)^{1-\beta}\), and an independent estimate of the CMB temperature at the present epoch, \(T_{0}=2.719\pm 0.009\) K, which agrees well with the estimate from orbital measurements, \(T_{0}=2.7255\pm 0.0006\) K.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. The processes that determined the initial conditions for primordial nucleosynthesis—neutrino decoupling, electron–positron annihilation, and a decrease in the neutron fraction—proceeded slightly earlier, 0.1 s after the Big Bang.

REFERENCES

  1. H. Abgrall, E. Roueff, and Y. Viala, Astron. Astrophys. Suppl. Ser. 50, 505 (1982).

    ADS  Google Scholar 

  2. E. Abrahamsson, R. V. Krems, and A. Dalgarno, Astrophys. J. 654, 1172 (2007).

    ADS  Article  Google Scholar 

  3. R. A. Alpher and R. C. Herman, Phys. Rev. 74, 1737 (1948).

    ADS  Article  Google Scholar 

  4. A. Avgoustidis, R. T. Génova-Santos, G. Luzzi, et al., Phys. Rev. D 93, 043521 (2016).

    ADS  Article  Google Scholar 

  5. J. N. Bahcall and R. A. Wolf, Astrophys. J. 152, 701 (1968).

    ADS  Article  Google Scholar 

  6. S. A. Balashev and P. Noterdaeme, Mon. Not. R. Astron. Soc. 478, 7 (2018).

    ADS  Article  Google Scholar 

  7. S. A. Balashev, A. V. Ivanchik, and D. A. Varshalovich, Astron. Lett. 36, 761 (2010).

    ADS  Article  Google Scholar 

  8. S. A. Balashev, P. Petitjean, A. V. Ivanchik, et al., Mon. Not. R. Astron. Soc. 418, 357 (2011).

    ADS  Article  Google Scholar 

  9. S. A. Balashev, P. Noterdaeme, H. Rahmani, et al., Mon. Not. R. Astron. Soc. 470, 2890 (2017).

    ADS  Article  Google Scholar 

  10. S. A. Balashev, V. V. Klimenko, P. Noterdaeme, et al., Mon. Not. R. Astron. Soc. 490, 2668 (2019).

    ADS  Article  Google Scholar 

  11. E. S. Battistelli, M. de Petris, L. Lamagna, et al., Astrophys. J. 580, L101 (2002).

    ADS  Article  Google Scholar 

  12. C. Cecchi-Pestellini, E. Bodo, and N. Balakrishnan, Astrophys. J. 571, 1015 (2002).

    ADS  Article  Google Scholar 

  13. H. Dekker, S. D’Odorico, A. Kaufer, et al., Proc. SPIE 4008, 534 (2000).

    ADS  Article  Google Scholar 

  14. R. Fabbri, F. Melchiorri, and V. Natale, Astrophys. Space Sci. 59, 223 (1968).

    ADS  Article  Google Scholar 

  15. D. J. Fixsen, Astrophys. J. 707, 916 (2009).

    ADS  Article  Google Scholar 

  16. D. J. Fixsen, E. S. Cheng, J. M. Gales, et al., Astrophys. J. 473, 576 (1996).

    ADS  Article  Google Scholar 

  17. K. Freese, F. C. Adams, J. A. Frieman, et al., Nucl. Phys. B 287, 797 (1987).

    ADS  Article  Google Scholar 

  18. G. Gamow, Phys. Rev. 70, 572 (1946).

    ADS  Article  Google Scholar 

  19. D. S. Gorbunov and V. A. Rubakov, Introduction to the Theory of the Early Universe. Hot Big Bang Theory (World Scientific, Singapore, 2011).

    MATH  Book  Google Scholar 

  20. R. Guimarges, P. Noterdaeme, P. Petitjean, et al., Astrophys. J. 143, 147 (2012).

    Google Scholar 

  21. G. Hurier, N. Aghanim, M. Douspis, et al., Astron. Astrophys. 561, 12 (2014).

    Article  Google Scholar 

  22. P. Jetzer, D. Puy, M. Signore, et al., Gen. Relat. Gravit. 43, 1083 (2011).

    ADS  Article  Google Scholar 

  23. R. A. Jorgenson, A. M. Wolfe, and J. X. Prochaska, Astrophys. J. 722, 460 (2010).

    ADS  Article  Google Scholar 

  24. V. V. Klimenko and S. A. Balashev, Mon. Not. R. Astron. Soc. 498, 1531 (2020).

    ADS  Article  Google Scholar 

  25. V. V. Klimenko, S. A. Balashev, A. V. Ivanchik, et al., Mon. Not. R. Astron. Soc. 448, 280 (2015).

    ADS  Article  Google Scholar 

  26. V. V. Klimenko, P. Petitjean, and A. V. Ivanchik, Mon. Not. R. Astron. Soc. 493, 5743 (2020).

    ADS  Article  Google Scholar 

  27. S. Ledoux, P. Petitjean, and R. Srianand, Mon. Not. R. Astron. Soc. 346, 209 (2003).

    ADS  Article  Google Scholar 

  28. J. A. S. Lima, A. I. Silva, and S. M. Viegas, Mon. Not. R. Astron. Soc. 312, 747 (2000).

    ADS  Article  Google Scholar 

  29. G. Luzzi, M. Shimon, L. Lamagna, et al., Astrophys. J. 705, 1122 (2009).

    ADS  Article  Google Scholar 

  30. G. Luzzi, D. Génova-Santos, C. J. A. P. Martins, et al., J. Cosmol. Astropart. Phys. 09, 011 (2015).

  31. J. Matyjasek, Phys. Rev. D 51, 4154 (1995).

    ADS  Article  Google Scholar 

  32. A. McKellar, Publ. Astron. Soc. Pacif. 52, 187 (1940).

    ADS  Article  Google Scholar 

  33. P. Noterdaeme, P. Petitjean, C. Ledoux, et al., Astron. Astrophys. 523, 17 (2010).

    Article  Google Scholar 

  34. P. Noterdaeme, P. Petitjean, R. Srianand, et al., Astron. Astrophys. 526, L7 (2011).

    ADS  Article  Google Scholar 

  35. P. Noterdaeme, R. Srianand, H. Rahmani, et al., Astron. Astrophys. 577, 24 (2015).

    Article  Google Scholar 

  36. P. Noterdaeme, J. K. Krogager, S. A. Balashev, et al., Astron. Astrophys. 597, 82 (2018).

    Article  Google Scholar 

  37. A. A. Penzias and R. W. Wilson, Astrophys. J. 142, 419 (1965).

    ADS  Article  Google Scholar 

  38. F. le Petit, C. Nehme, J. le Bourlot, and E. Roueff, Astrophys. J. Suppl. Ser. 164, 506 (2016).

    ADS  Article  Google Scholar 

  39. Planck Collab. et al., Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  40. A. Ranjan, P. Noterdaeme, J. K. Krogager, et al., Astron. Astrophys. 618, 184 (2018).

    Article  Google Scholar 

  41. Y. Rephaeli, Astrophys. J. 241, 858 (1980).

    ADS  Article  Google Scholar 

  42. K. C. Roth and D. M. Meyer, Astrophys. J. 413, L67 (1993).

    ADS  Article  Google Scholar 

  43. K. Schroder, V. Staemmler, M. D. Smith, et al., J. Phys. B: At. Mol. Opt. Phys. 24, 2487 (1991).

    ADS  Article  Google Scholar 

  44. A. I. Silva and S. M. Viegas, Mon. Not. R. Astron. Soc. 329, 135 (2002).

    ADS  Article  Google Scholar 

  45. A. I. Sobolev, A. V. Ivanchik, D. A. Varshalovich, et al., J. Phys.: Conf. Ser. 661, 012013 (2015).

    Google Scholar 

  46. R. Srianand, P. Noterdaeme, C. Ledoux, and P. Petitjean, Astron. Astrophys. 482, L39 (2008).

    ADS  Article  Google Scholar 

  47. R. Srianand, P. Petitjean, and C. Ledoux, Nature (London, U.K.) 408, 931 (2000).

    ADS  Article  Google Scholar 

  48. R. Srianand, P. Petitjean, C. Ledoux, et al., Mon. Not. R. Astron. Soc. 362, 549 (2005).

    ADS  Article  Google Scholar 

  49. V. Staemmler and D. R. Flower, J. Phys. B: At. Mol. Opt. Phys. 24, 2343 (1991).

    ADS  Article  Google Scholar 

  50. S. S. Vogt, S. L. Allen, B. C. Bigelow, et al., Proc. SPIE 2198, 362 (1994).

    ADS  Article  Google Scholar 

  51. K. M. Walker, L. Song, B. H. Yang, et al., Astrophys. J. 811, 27 (2015).

    ADS  Article  Google Scholar 

  52. B. Yang, N. Balakrishnan, P. Zhang, et al., J. Chem. Phys. 145, 034308 (2016).

    ADS  Article  Google Scholar 

  53. Ya. B. Zeldovich and R. A. Sunyaev, Astrophys. Space Sci. 4, 301 (1969).

    ADS  Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 18-12-00301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Klimenko.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klimenko, V.V., Ivanchik, A.V., Petitjean, P. et al. Estimation of the Cosmic Microwave Background Temperature from Atomic C I and Molecular CO Lines in the Interstellar Medium of Early Galaxies. Astron. Lett. 46, 715–725 (2020). https://doi.org/10.1134/S1063773720110031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720110031

Keywords:

  • cosmology
  • early Universe
  • interstellar medium
  • quasar spectra