The First Orbits of Six Wide Double Stars in the Solar Neighborhood Based on Gaia DR2 Observations

Abstract

The apparent motion parameter (AMP) method is designed to determine the orbits of wide pairs of double stars with orbital periods of hundreds and thousands of years. This is a dynamical method using all that is known about the star at one moment to reconstruct its complete orbit within the two-body problem. The Gaia DR2 catalog contains all of the data for epoch 2015.5 that are needed to use the AMP method if the relative motion reflects an unperturbed orbital motion. We demonstrate the possibilities of the method to determine the orbits of individual stars. Six stars have been investigated. For the triple star ADS 7034 we have determined the orbit of the inner pair, the set of orbits of the outer pair, and the stability region of the triple system for the first time. Using the double star ADS 9357 as an example, we show that for the determination of the orbits of individual stars the AMP method has an advantage over the geometrical methods using the Thiele–Innes equations on short arcs covered by observations. The orbits with periods more than 1000 years have been determined for the first time for three stars: ADS 7588, ADS 8561, and ADS 9048. For WDS 14051+4913 it is impossible to determine a reliable orbit, a preliminary family of orbits has been obtained, and a companion is suspected. We give a list of problem stars for which the orbits have not been determined, but the presence of a companion is possible.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

REFERENCES

  1. 1

    S. J. Aarseth, Gravitational N-body Simulations. Tools and Algorithms (Cambridge Univ. Press, Cambridge, 2003).

  2. 2

    T. A. Agekyan, Stars, Galaxies, Metagalaxy (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  3. 3

    Allen’s Astrophysical Quantities, Ed. by A. N. Coh, 4th ed. (Springer, New York, 1999).

    Google Scholar 

  4. 4

    A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, C. Babusiaux, C. A. L. Bailer-Jones, M. Biermann, D. W. Evans, et al., Astron. Astrophys. 616, A1 (2018).

    Google Scholar 

  5. 5

    W. I. Hartkopf, H. A. McAlister, and O. G. Franz, Astron. J. 98, 1014 (1989).

    Article  Google Scholar 

  6. 6

    H. M. Hauser and G. W. Marcy, Publ. Astron. Soc. Pacif. 111, 321 (1999).

    ADS  Article  Google Scholar 

  7. 7

    J. Hopmann, Mitt. Univ. Sternwarte Wien 10, 155 (1960).

    ADS  Article  Google Scholar 

  8. 8

    I. S. Izmailov, M. L. Khovricheva, M. Yu. Khovrichev, O. V. Kiyaeva, E. V. Khrutskaya, L. G. Romanenko, E. A. Grosheva, K. L. Maslennikov, and O. A. Kalinichenko, Astron. Lett. 36, 349 (2010).

    ADS  Google Scholar 

  9. 9

    I. S. Izmailov and E. A. Roshchina, Astrophys. Bull. 71, 225 (2016). http://izmccd.puldb.ru/vds.htm.

    ADS  Article  Google Scholar 

  10. 10

    I. S. Izmailov, Astron. Lett. 45, 30 (2019).

    ADS  Article  Google Scholar 

  11. 11

    A. A. Kiselev and O. P. Bykov, Sov. Astron. 17, 816 (1973).

    ADS  Article  Google Scholar 

  12. 12

    A. A. Kiselev and O. V. Kiyaeva, Sov. Astron. 24, 708 (1980).

    ADS  Google Scholar 

  13. 13

    A. A. Kiselev, O. V. Kiyaeva, I. S. Izmailov, L. G. Romanenko, O. A. Kalinichenko, O. O. Vasil’kova, T. A. Vasil’eva, N. A. Shakht, D. L. Gorshanov, and E. A. Roshchina, Astron. Rep. 58, 78 (2014).

    Google Scholar 

  14. 14

    A. A. Kiselev and L. G. Romanenko, Astron. Rep. 40, 795 (1996).

    ADS  Article  Google Scholar 

  15. 15

    A. A. Kiselev, L. G. Romanenko, and O. A. Kalinichenko, Astron. Rep. 53, 126 (2009).

    ADS  Google Scholar 

  16. 16

    O. V. Kiyaeva, Sov. Astron. 27, 701 (1983).

    ADS  Article  Google Scholar 

  17. 17

    O. V. Kiyaeva, A. A. Kiselev, E. V. Polyakov, and V. B. Rafal’skii, Astron. Lett. 27, 391 (2001).

    ADS  Google Scholar 

  18. 18

    O. V. Kiyaeva, L. G. Romanenko, and R. Ya. Zhuchkov, Astron. Lett. 43, 316 (2017).

    ADS  Article  Google Scholar 

  19. 19

    O. V. Kiyaeva, R. Ya. Zhuchkov, and I. S. Izmailov, Astrophys. Bull. 75 (2020) (in press).

    ADS  Article  Google Scholar 

  20. 20

    B. D. Mason, G. L. Wycoff, W. I. Hartkopf, et al., The Washington Visual Double Star Catalog, version 2016. http://ad.usno.navi.mil/wds/.

  21. 21

    A. S. Matvienko, O. V. Kiyaeva, and V. V. Orlov, Astron. Lett. 41, 43 (2015).

  22. 22

    L. G. Romanenko and O. A. Kalinichenko, Astron. Astrophys. Trans. 31, 7 (2019).

    ADS  Article  Google Scholar 

  23. 23

    A. A. Tokovinin, Astron. Astrophys. Suppl. Ser. 235, 6 (2018). http://www.ctio.noao.edu/atokovin/stars/stars.php.

    ADS  Google Scholar 

  24. 24

    R. Ya. Zhuchkov, O. V. Kiyaeva, and V. V. Orlov, Astron. Rep. 54, 38 (2010).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.A. Tokovinin for his useful critical remarks. We are grateful to the creators of the WDS and Gaia catalogs, whose results are used in this paper, and personally to B. Mason, who provided the WDS data at our request.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-02-00563A).

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. V. Kiyaeva.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiyaeva, O.V., Romanenko, L.G. The First Orbits of Six Wide Double Stars in the Solar Neighborhood Based on Gaia DR2 Observations. Astron. Lett. 46, 555–571 (2020). https://doi.org/10.1134/S1063773720070063

Download citation

Keywords:

  • double stars
  • orbits from short arcs