Skip to main content
Log in

Masses of the Trojan Groups of Jupiter

  • Published:
Astronomy Letters Aims and scope Submit manuscript


The possibility of obtaining dynamical estimates of the total masses in the two Trojan asteroid groups of Jupiter is investigated. The compact Greek (L4) and Trojan (L5) groups contain several tens of thousands of asteroids near the stable Lagrange points moving in a 1: 1 resonance with the orbital motion of Jupiter. The dynamical mass estimates

$$\begin{array}{*{20}{c}} {{M_{L4}} = (8.63 \pm 0.51) \times {{10}^{ - 6}}{M_ \oplus },} \\ {{M_{L5}} = (5.46 \pm 0.54) \times {{10}^{ - 6}}{M_ \oplus }} \end{array}$$

have been obtained by processing more than 800 thousand observations of planets and spacecraft using the new EPM2019 version of planetary ephemerides created at IAA RAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. T. Grav, A. K. Mainzer, J. Bauer, J. Masiero, T. Spahr, R. S. McMillan, R. Walker, R. Cutri, et al., Astrophys. J. 742, 40 (2011).

    Article  ADS  Google Scholar 

  2. D. Jewitt, Astron. J. 155, 56 (2018).

    Article  ADS  Google Scholar 

  3. D. C. Jewitt, C. A. Trjillo, and J. H. Luu, Astron. J. 120, 1140 (2000).

    Article  ADS  Google Scholar 

  4. D. L. Jones, W. M. Folkner, R. S. Parks, et al., in Proceedings of the IEEE Aerospace Conference, March 3–10, 2018 (2018).

  5. G. A. Krasihsky, E. V. Pitjeva, M. V. Vasilyev, et al., Icarus 158, 98 (2002).

    Article  ADS  Google Scholar 

  6. P. Kuchynka and W. Folkner, Icarus 222, 243 (2013).

    Article  ADS  Google Scholar 

  7. J. Li and Y. S. Sun, Astron. Astrophys. 616, A70 (2018).

    Article  ADS  Google Scholar 

  8. F. D. Marchis, P. Hestroffer, J. B. Descamps, J. Berthier, A. H. Bouchez, R. D. Campbell, J. C. Y. Chin, M. A. van Dam, et al., Nature (London, U.K.) 439, 565 (2006).

    Article  ADS  Google Scholar 

  9. A. Morbidelli, H. F. Levison, K. Tsiganis, and R. Gomes, Nature (London, U.K.) 435, 462 (2005).

    Article  ADS  Google Scholar 

  10. T. Nakamura and F. Yoshida, Publ. Astron. Soc. Jpn. 60, 29 (2008).

    Article  ADS  Google Scholar 

  11. D. Nesvorny, D. Vokrouhlicky, and A. Morbidelli, Astrophys. J. 768, 45 (2013).

    Article  ADS  Google Scholar 

  12. R. S. Park, W. M. Folkner, D. L. Jones, J. S. Border, A. S. Konopliv, T. J. Martin-Mur, V. Dhawan, Ed. Fomalont, and J. D. Romney, Astron. J. 150, 121 (2015).

    Article  ADS  Google Scholar 

  13. E. V. Pitjeva, in Transit of Venus: New Views of the Solar System and Galaxy, Proceedings of the 196th IAU Colloquium, Ed. by D. W. Kurtz (Cambridge Univ. Press, Cambridge, 2005), p. 230.

  14. E. Pitjeva and D. Pavlov, Ephemerides EPM2017 and EPM2017H, 2017.

  15. E. V. Pitjeva and N. P. Pitjev, Celest. Mech. Dyn. Astron. 119, 237 (2014).

    Article  ADS  Google Scholar 

  16. E. V. Pitjeva and N. P. Pitjev, Celest. Mech. Dyn. Astron. 130, 57 (2018a).

    Article  ADS  Google Scholar 

  17. E. V. Pitjeva and N. P. Pitjev, Astron. Lett. 44, 554 (2018b).

    Article  ADS  Google Scholar 

  18. E. M. Standish, Newhall XX, J. G. Williams, et al., Interoffice Memorandum 314.10-127 (1995).

  19. G. M. Szabo, Z. Ivezic, M. Juric, and R. Lupton, Mon. Not. R. Astron. Soc. 377, 1393 (2007).

    Article  ADS  Google Scholar 

  20. T. Vinogradova, Tr. IPA RAN 26, 110 (2012).

    Google Scholar 

  21. T. A. Vinogradova and Ya. A. Chernetenko, Solar Syst. Res. 49, 391 (2015a).

    Article  ADS  Google Scholar 

  22. T. A. Vinogradova and Ya. A. Chernetenko, in Near Earth Astrometry, Proceedings of the International Conference, Ed. by V. M. Shustov, L. V. Rykhlova, E. S. Bakanas, and A. P. Kartashova (Moscow, 2015b), p. 13.

  23. J. G. Williams, Bull. Am. Astron. Soc. 21, 1009 (1989).

    Google Scholar 

Download references


We thank D.A. Pavlov for the development of the ERA software package that allowed us to take an important step in developing the EPM ephemerides and the EPM2019 version: including the additional gravitational accelerations from the Trojans in the general model to integrate the differential equations; integrating the isochronous derivatives.

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. V. Pitjeva.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Astronomicheskii Zhurnal, 2019, Vol. 45, No. 12, pp. 902–908.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitjeva, E.V., Pitjev, N.P. Masses of the Trojan Groups of Jupiter. Astron. Lett. 45, 855–860 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: