Decrease in the Brightness of the Cosmic X-ray and Soft Gamma-ray Background toward Clusters of Galaxies

Abstract

We show that Compton scattering by electrons of the hot intergalactic gas in galaxy clusters should lead to peculiar distortions of the cosmic background X-ray and soft gamma-ray radiation—an increase in its brightness at hv ≲ 60−100 keV and a drop at higher energies. The background distortions are proportional to the cluster gas surface density, in contrast to the intensity of the thermal gas radiation proportional to the density squared, which allows the most important cluster parameters to be measured. The spectral shape of the background distortions and its dependence on the gas temperature, optical depth, and surface density distribution law have been studied using detailed Monte Carlo calculations and conformed by analytical estimations. In the cluster frame the maximum of the background decrease due to the recoil effect occurs at hv ∼ 500−600 keV. The photoionization of hydrogen- and helium-like iron and nickel ions leads to additional distortions in the background spectrum—a strong absorption line with the threshold at hv ∼ 9 keV (and also to an absorption jump at hv ≳ 2 keV for cold clusters). The absorption of intrinsic thermal radiation from the cluster gas by these ions also leads to such lines. In nearby (z ≲ 1) clusters the line at hv ∼ 2 keV is noticeably enhanced by absorption in the colder (∼106 K) plasma of their peripheral (≲3 Mpc) regions; moreover, the absorption line at hv ∼ 1.3 keV, which does not depend on the properties of the hot cluster gas, splits off from it. The redshift of distant clusters shifts the absorption lines in the background spectrum (at ∼2, ∼9, and ∼500 keV) to lower energies. Thus, in contrast to the microwave background radiation scattering effect, this effect depends on the cluster redshift z, but in a very peculiar way. When observing clusters at z ≳ 1, the effect allows one to determine how the X-ray background evolved and how it was “gathered” with z. To detect the effect, the accuracy of measurements should reach ∼0.1%. We consider the most promising clusters for observing the effect and discuss the techniques whereby the influence of the thermal gas radiation hindering the detection of background distortions should be minimal.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. Balbi, et al. (Planck Collab.), Astron. Astrophys. 554, A140 (2013).

    Article  Google Scholar 

  2. 2.

    P. A. R. Ade, N. Agranim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, H. Aussel, et al. (Planck Collab.), Astron. Astrophys. 571, A29 (2014).

    Article  Google Scholar 

  3. 3.

    P. A. R. Ade, N. Agranim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, H. Aussel, et al. (Planck Collab.), Astron. Astrophys. 581, A14 (2015).

    Article  Google Scholar 

  4. 4.

    P. A. R. Ade, N. Agranim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, et al. (Planck Collab.), Astron. Astrophys. 594, A27 (2016a).

    Article  Google Scholar 

  5. 5.

    P. A. R. Ade, N. Agranim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, et al. (Planck Collab.), Astron. Astrophys. 596, A101 (2016b).

    Article  Google Scholar 

  6. 6.

    N. Aghanim, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. Balbi, A. J. Banday, et al. (Planck Collab.), Astron. Astrophys. 536, A26 (2011).

    Article  Google Scholar 

  7. 7.

    C. W. Allen, Astrophysical Quantities, 3rd ed. (Athlone, London, 1973).

    Google Scholar 

  8. 8.

    A. de Angelis, V. Tatischeff, M. Tavani, U. Oberlack, I. Grenier, L. Hanlon, R. Walter, A. Argan, P. von Ballmoos, et al., Exp. Astron. 44, 25 (2017).

  9. 9.

    M. Arnaud, Astron. Astrophys. 500, 103 (2009).

    ADS  Article  Google Scholar 

  10. 10.

    M. Arnaud, G. W. Pratt, R. Piffaretti, H. Böhringer, J. H. Croston, and E. Pointecouteau, Astron. Astrophys. 517, A92 (2010).

    ADS  Article  Google Scholar 

  11. 11.

    J. Arons, Astrophys. J. 164, 437 (1971).

    ADS  Article  Google Scholar 

  12. 12.

    M. Birkinshaw, Phys. Rep. 310, 97 (1999).

    ADS  Article  Google Scholar 

  13. 13.

    L. E. Bleem, B. Stalder, T. de Haan, K. A. Aird, S. W. Allen, D. E. Applegate, M. L. N. Ashby, M. Bautz, et al., Astrophys. J. Suppl. Ser. 216, 27 (2015).

    ADS  Article  Google Scholar 

  14. 14.

    E. Boldt, Phys. Rep. 146, 215 (1987).

    ADS  Article  Google Scholar 

  15. 15.

    S. Boughn and R. Crittenden, Nature (London, U.K.) 427, 45 (2004).

    ADS  Article  Google Scholar 

  16. 16.

    S. P. Boughn and R. G. Crittenden, Mon. Not. R. Astron. Soc. 360, 1013 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    E. Bulbul, I.-N. Chiu, J. J. Mohr, M. McDonald, B. Benson, M. W. Bautz, M. Bayliss, and L. Bleem, Astrophys. J. 871, 50 (2019).

    ADS  Article  Google Scholar 

  18. 18.

    J. E. Carlstrom, G. P. Reese, and D. Erik, Ann. Rev. Astron. Astrophys. 40, 643 (2002).

    ADS  Article  Google Scholar 

  19. 19.

    A. Cavaliere and R. Fusco-Femiano, Astron. Astrophys. 49, 137 (1976).

    ADS  Google Scholar 

  20. 20.

    R. Cen and J. P. Ostriker, Astrophys. J. 514, 1 (1999).

    ADS  Article  Google Scholar 

  21. 21.

    E. Churazov, M. Haehnelt, O. Kotov, and R. Sunyaev, Mon. Not. R. Astron. Soc. 323, 93 (2001).

    ADS  Article  Google Scholar 

  22. 22.

    E. Churazov, R. Sunyaev, M. Revnivtsev, S. Sazonov, S. Molkov, S. Grebenev, C. Winkler, A. Parmar, et al., Astron. Astrophys. 467, 529 (2007).

    ADS  Article  Google Scholar 

  23. 23.

    G. Cooper, Phys. Rev. D 3, 2312 (1971).

    ADS  Article  Google Scholar 

  24. 24.

    L. P. David, A. Slyz, C. Jones, W. Forman, S. D. Vrtilek, and K. A. Arnaud, Astrophys. J. 412, 479 (1993).

    ADS  Article  Google Scholar 

  25. 25.

    A. C. Fabian, Nature (London, U.K.) 269, 672 (1977).

    ADS  Article  Google Scholar 

  26. 26.

    A. Finoguenov, U. G. Briel, and J. P. Henry, Astron. Astrophys. 410, 777 (2003).

    ADS  Article  Google Scholar 

  27. 27.

    W. Forman and C. Jones, Ann. Rev. Astron. Astrophys. 276, 547 (1982).

    ADS  Article  Google Scholar 

  28. 28.

    C. L. Fryer, F. Timmes, A. L. Hungerford, A. Couture, F. Adams, M. Avila, W. A. Aoki, A. Arcones, D. Arnett, et al., astro-ph:1902.02915 (2019).

  29. 29.

    M. Fukugita, C. Hogan, and P. J. E. Peebles, Astrophys. J. 503, 518 (1998).

    ADS  Article  Google Scholar 

  30. 30.

    R. Gavazzi, C. Adami, F. Durret, J.-C. Cuillandre, O. Ilbert, A. Mazure, R. Pelló, and M. P. Ulmer, Astron. Astrophys. 498, L33 (2009).

    ADS  Article  Google Scholar 

  31. 31.

    R. Giacconi, P. Rosati, P. Tozzi, M. Nonino, G. Hasinger, C. Norman, J. Bergeron, S. Borgani, et al., Astrophys. J. 551, 624 (2001).

    ADS  Article  Google Scholar 

  32. 32.

    S. A. Grebenevand R. A. Sunyaev, Sov. Astron. Lett. 13, 438 (1987).

    ADS  Google Scholar 

  33. 33.

    S. A. Grebenev and R. A. Sunyaev, Mon. Not. R. Astron. Soc., in preparation (2019).

  34. 34.

    D. E. Gruber, J. L. Matteson, L. E. Peterson, and G. V. Jung, Astrophys. J. 520, 124 (1999a).

    ADS  Article  Google Scholar 

  35. 35.

    D. E. Gruber, D. MacDonald, R. E. Rothschild, E. Boldt, R. F. Mushotzky, and A. C. Fabian, Nucl. Phys. B—Proc. Suppl. 69, 625 (1999b).

    ADS  Article  Google Scholar 

  36. 36.

    F. A. Harrison, W. W. Craig, F. E. Christensen, C. J. Hailey, W. W. Zhang, S. E. Boggs, D. Stern, W. R. Cook, et al., Astrophys. J. 770, 103 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    G. Hasinger, R. Burg, R. Giacconi, M. Schmidt, J. Trumper, and G. Zamorani, Astron. Astrophys. 329, 482 (1998).

    ADS  Google Scholar 

  38. 38.

    M. Hasselfield, M. Hilton, T. A. Marriage, G. E. Addison, L. F. Barrientos, N. Battaglia, E. S. Battistelli, J. R. Bond, et al., J. Cosmol. Astropart. Phys. 07, 008 (2013).

    ADS  Article  Google Scholar 

  39. 39.

    T. Herbig, C. R. Lawrence, A. C. S. Readhead, and S. Gulkis, Astrophys. J. 449, L5 (1995).

    ADS  Article  Google Scholar 

  40. 40.

    A. F. Illarionov and R. A. Syunyaev, Sov. Astron. 16, 45 (1972).

    ADS  Google Scholar 

  41. 41.

    C. Jones and W. Forman, Astrophys. J. 276, 38 (1984).

    ADS  Article  Google Scholar 

  42. 42.

    J. S. Kaastra, Proc. IAU Colloq. 195, 105 (2004a).

    ADS  Google Scholar 

  43. 43.

    J. S. Kaastra, J. Korean Astron. Soc. 37, 375 (2004b).

    ADS  Article  Google Scholar 

  44. 44.

    R. Khatri and R. A. Sunyaev, (2019, in preparation).

  45. 45.

    A. S. Kompaneets, Sov. Phys. JETP 4, 730 (1957).

    ADS  MathSciNet  Google Scholar 

  46. 46.

    A. V. Kravtsov, A. Vikhlinin, and D. Nagai, Astrophys. J. 650, 128 (2006).

    ADS  Article  Google Scholar 

  47. 47.

    M. S. Longair and R. A. Sunyaev, Nature 223, 719 (1969).

    ADS  Article  Google Scholar 

  48. 48.

    D. R. MacDonald, D. E. Gruber, and E. A. Boldt, AIP Conf. Proc. 599, 734 (2001).

    ADS  Article  Google Scholar 

  49. 49.

    P. Madau and G. Efstathiou, Astrophys. J. 517, L9 (1999).

    ADS  Article  Google Scholar 

  50. 50.

    M. Markevich, G. R. Blumenthal, W. Forman, C. Jones, and R. A. Sunyaev, Astrophys. J. 395, 326 (1992).

    ADS  Article  Google Scholar 

  51. 51.

    M. Markevitch, R. A. Sunyaev, and M. N. Pavlinsky, Nature (London, U.K.) 364, 40 (1993).

    ADS  Article  Google Scholar 

  52. 52.

    M. Markevitch, A. H. Gonzalez, L. David, A. Vikhlinin, S. Murray, W. Forman, C. Jones, and W. Tucker, Astrophys. J. 567, L27 (2002).

    ADS  Article  Google Scholar 

  53. 53.

    M. McDonald, B. R. McNamara, R. J. van Weeren, D. E. Applegate, M. Bayliss, M. W. Bautz, B. A. Benson, J. E. Carlstrom, et al., Astrophys. J. 811, 111 (2015).

    ADS  Article  Google Scholar 

  54. 54.

    F. Menanteau, J. P. Hughes, C. Sifón, M. Hilton, J. González, L. Infante, L. F. Barrientos, A. J. Baker, et al., Astrophys. J. 748, 7 (2012).

    ADS  Article  Google Scholar 

  55. 55.

    T. Miyaji, G. Hasinger, and M. Schmidt, Astron. Astrophys. 353, 25 (2000).

    ADS  Google Scholar 

  56. 56.

    T. Miyaji, G. Hasinger, M. Salvato, M. Brusa, N. Cappelluti, F. Civano, S. Puccetti, M. Elvis, et al., Astrophys. J. 804, 104 (2015).

    ADS  Article  Google Scholar 

  57. 57.

    J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).

    ADS  Article  Google Scholar 

  58. 58.

    M. Pavlinsky, V. Levin, V. Akimov, A. Krivchenko, A. Rotin, M. Kuznetsova, I. Lapshov, A. Tkachenko, et al., Proc. SPIE 10699, 106991Y (2018).

    Google Scholar 

  59. 59.

    L. A. Pozdnyakov, I. M. Sobol’, and R. A. Syunyaev, Sov. Sci. Rev., Sec. E: Astrophys. Space Phys. Rev. 2, 189 (1983).

    ADS  Google Scholar 

  60. 60.

    P. Predehl, W. Bornemann, H. Brauninger, H. Brunner, V. Burwitz, D. Coutinho, K. Dennerl, J. Eder, et al., Proc. SPIE 10699, 106995H (2018).

    Google Scholar 

  61. 61.

    M. Rauch, Ann. Rev. Astron. Astrophys. 36, 267 (1998).

    ADS  Article  Google Scholar 

  62. 62.

    J. C. Raymond and B. W. Smith, Astrophys. J. Suppl. Ser. 35, 419 (1977).

    ADS  Article  Google Scholar 

  63. 63.

    S. Yu. Sazonov and R. A. Sunyaev, Astrophys. J. 543, 28 (2000).

    ADS  Article  Google Scholar 

  64. 64.

    S. Yu. Sazonov, R. A. Sunyaev, and C. K. Cramphorn, Astron. Astrophys. 393, 793 (2002).

    ADS  Article  Google Scholar 

  65. 65.

    S. Sazonov, R. Krivonos, M. Revnivtsev, E. Churazov, and R. Sunyaev, Astron. Astrophys. 482, 517 (2008).

    ADS  Article  Google Scholar 

  66. 66.

    S. L. Shapiro, A. P. Lightman, and D. M. Eardley, Astrophys. J. 204, 187 (1976).

    ADS  Article  Google Scholar 

  67. 67.

    X. Shi and E. Komatsu, Mon. Not. R. Astron. Soc. 442, 521 (2014).

    ADS  Article  Google Scholar 

  68. 68.

    X. Shi, E. Komatsu, D. Nagai, and E. T. Lau, Mon. Not. R. Astron. Soc. 455, 2936 (2016).

    ADS  Article  Google Scholar 

  69. 69.

    R. A. Sunyaev, Sov. Astron. Lett. 6, 213 (1980).

    ADS  Google Scholar 

  70. 70.

    R. A. Sunyaev and Ya. B. Zeldovich, Astrophys. Suppl. Ser. 7, 3 (1970).

    ADS  Google Scholar 

  71. 71.

    R. A. Sunyaev and Ya. B. Zeldovich, Comm. Astrophys. Space Phys. 4, 173 (1972).

    ADS  Google Scholar 

  72. 72.

    R. A. Sunyaev and Ya. B. Zeldovich, Ann. Rev. Astron. Astrophys. 18, 537 (1980).

    ADS  Article  Google Scholar 

  73. 73.

    R. A. Sunyaev and Ya. B. Zeldovich, Sov. Sci. Rev., Sect. E: Astrophys. Space Phys. Rev. 1, 1 (1981).

    ADS  Google Scholar 

  74. 74.

    R. A. Sunyaev and L. G. Titarchuk, Astron. Astrophys. 86, 121 (1980).

    ADS  Google Scholar 

  75. 75.

    R. A. Sunyaev, M. Markevitch, and M. Pavlinsky, Astrophys. J. 407 606 (1993).

    ADS  Article  Google Scholar 

  76. 76.

    V. Tatischeff, M. Tavani, P. von Ballmoos, L. Hanlon, U. Oberlack, A. Aboudan, A. Argan, D. Bernard, et al., Proc. SPIE 9905, 99052N (2016).

    Google Scholar 

  77. 77.

    M. Treyer, C. Scharf, O. Lahav, K. Jahoda, E. Boldt, and T. Piran, Astrophys. J. 509, 531 (1998).

    ADS  Article  Google Scholar 

  78. 78.

    Y. Ueda, M. Akiyama, G. Hasinger, T. Miyaji, and M. G. Watson, Astrophys. J. 786, 104 (2014).

    ADS  Article  Google Scholar 

  79. 79.

    L. A. Vainshtein and R. A. Sunyaev, Sov. Astron. Lett. 6, 353 (1980).

    ADS  Google Scholar 

  80. 80.

    D. A. Verner and D. G. Yakovlev, Astron. Astrophys. Suppl. Ser. 109, 125 (1995).

    ADS  Google Scholar 

  81. 81.

    D. A. Verner, G. J. Ferland, K. T. Korista, and D. G. Yakovlev, Astrophys. J. 465, 487 (1996).

    ADS  Article  Google Scholar 

  82. 82.

    A. Vikhlinin, A. Kravtsov, W. Forman, C. Jones, M. Markevitch, S. S. Murray, and L. Van Speybroeck, Astrophys. J. 640, 691 (2006).

    ADS  Article  Google Scholar 

  83. 83.

    E. Virgilli, V. Valsan, F. Frontera, E. Caroli, V. Liccardo, J. B. Stephen, JATIS 3, 044001 (2017); arXiv:1711.03475.

    ADS  Google Scholar 

  84. 84.

    D. A. White, C. Jones, and W. Forman, Mon. Not. R. Astron. Soc. 292, 419 (1997).

    ADS  Article  Google Scholar 

  85. 85.

    R. Williamson, B. A. Benson, F. W. High, K. Vanderlinde, P. A. R. Ade, K. A. Aird, K. Andersson, R. Armstrong, et al., Astrophys. J. 738, 139 (2011).

    ADS  Article  Google Scholar 

  86. 86.

    Ya. B. Zel’dovich and I. D. Novikov, The Structure and Evolution of the Universe (M.: Nauka, 1975).

  87. 87.

    Ya. B. Zel’dovich and R. A. Sunyaev, in Astrophysics and Space Physics, Ed. by R. A. Sunyaev (Nauka/Fizmatlit, Moscow, 1982), p. 9 [in Russian].

Download references

Acknowledgments

S.A. Grebenev is grateful to R.A. Burenin and S.Yu. Sazonov for the useful discussion and consultations and the Basic Research Program 12 of the Russian Academy of Sciences (“Questions of the Origin and Evolution of the Universe with the Application of Methods of Ground-Based Observations and Space Research”)—for financial support. R.A. Sunyaev is grateful to the Russian Science Foundation for support by grant no. 19-12-00369. This study was performed within the “Universe” theme of the research program at the Space Research Institute of the Russian Academy of Sciences.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Grebenev.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Astronomicheskii Zhurnal, 2019, Vol. 45, No. 12, pp. 835–865.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grebenev, S.A., Sunyaev, R.A. Decrease in the Brightness of the Cosmic X-ray and Soft Gamma-ray Background toward Clusters of Galaxies. Astron. Lett. 45, 791–820 (2019). https://doi.org/10.1134/S1063773719120016

Download citation

Keywords

  • cosmic background radiation
  • galaxy clusters
  • hot and warm-hot intergalactic plasma
  • Compton scattering
  • recoil effect
  • Doppler effect
  • photoionization
  • bremsstrahlung and recombination radiation