Advertisement

Astronomy Letters

, Volume 45, Issue 6, pp 353–360 | Cite as

On Period Distribution of RR Lyr Type Variables in the Globular Cluster M3

  • Yu. A. FadeyevEmail author
Article
  • 7 Downloads

Abstract

Evolutionary calculations of population II stars with chemical composition of the globular cluster M3 were carried out under various assumptions about the initial stellar mass (0.809 MMZAMS ≤ 0.83 M and the mass loss rate parameter in the Reimers formula (0.45 ≤ ηR ≤ 0.55). In general, 30 evolutionary tracks of the horizontal branch stars were computed. Selected models of evolutionary sequences were used as initial conditions for solution of the equations of hydrodynamics that describe radial stellar oscillations. Hydrodynamic models of RR Lyr type stars were computed for the core helium burning stage as well as for the preceding pre-ZAHB stage. Analytic relations for the effective temperature of the instability strip edges as a function of stellar luminosity are obtained. Theoretical histograms of the period distribution of RR Lyr type variables were produced for each evolutionary sequence using Monte-Carlo simulations based on the consistent stellar evolution and nonlinear stellar pulsation calculations. A satisfactory agreement with observations (i.e., the greater number of RRab variables) was found for the evolutionary sequence MZAMS = 0.811 M, ηR= 0.55 with the number fraction of fundamental mode pulsators ≈ 75%. At the same time the mean period of fundamental mode pulsators (〈Π〉0 = 0.79 day) is substantially greater compared to the observational estimate of 〈Π〉ab.

Keywords

stars: variable and peculiar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author is indebted to L.R. Yungelson for critical comments and useful discussions.

References

  1. 1.
    T. S. van Albada and N. Baker, Astrophys. J. 185, 477 1973.ADSCrossRefGoogle Scholar
  2. 2.
    G. A. Bakos, J. M. Benko, and J. Jurcsik, Acta Astron. 50, 221 (2000).ADSGoogle Scholar
  3. 3.
    D. A. van de Berg, P. A. Denissenkov, and M. Catelan, Astrophys. J. 827, 2 (2016).ADSCrossRefGoogle Scholar
  4. 4.
    S. van de Bergh, Astron. J. 62, 334 (1957).ADSCrossRefGoogle Scholar
  5. 5.
    E. Böhm-Vitense, Zeitschr. Astrophys. 46, 108 (1958).ADSGoogle Scholar
  6. 6.
    G. Bono and R. F. Stellingwerf, Astrophys. J. Suppl. Ser. 93, 233 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    C. Cacciari, T. M. Corwin, and B. W. Carney, Astron. J. 129, 267 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    F. Caputo, Astron. Astrohys. Rev. 9, 33 (1998).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    F. Caputo, P. Santolamazza, and M. Marconi, Mon. Not. R. Astron. Soc. 293, 364 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    M. Catelan, Astrophys. J. 600, 409 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    M. Catelan, F. R. Ferraro, and R. T. Rood, Astrophys. J. 560, 970 (2001).ADSCrossRefGoogle Scholar
  12. 12.
    T. Constantino, S. W. Campbell, J. Christensen-Dalsgaard, J. C. Lattanzio, and D. Stello, Mon. Not. R. Astron. Soc. 452, 123 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    T. Constantino, S. W. Campbell, W. Simon, J. C. Lattanzio, and A. van Duijneveldt, Mon. Not. R. Astron. Soc. 456, 3866 (2016).ADSCrossRefGoogle Scholar
  14. 14.
    T. Constantino, S. W. Campbell, and J. C. Lattanzio, Mon. Not. R. Astron. Soc. 472, 4900 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    T. M. Corwin and B. W. Carney, Astron. J. 122, 3183 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    R. H. Cyburt, A. M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R. D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F. K. Thielemann, and M. Wiescher, Astrophys. J. Suppl. Ser. 189, 240 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    Yu. A. Fadeyev, Astron. Lett. 39, 306 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. A. Fadeyev, Mon. Not. R. Astron. Soc. 449, 1011 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. A. Fadeyev, Astron. Lett. 44, 616 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    I. Iben, Ann. Rev. Astron. Astrophys. 12, 215 (1974).ADSCrossRefGoogle Scholar
  21. 21.
    R. Kuhfuß, Astron. Astrophys. 160, 116 (1986).ADSGoogle Scholar
  22. 22.
    M. Marconi, F. Caputo, M. d. Criscienzo, and M. Castellani, Astrophys. J. 596, 299 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    M. Marconi, G. Coppola, G. Bono, V. Braga, A. Pietrinferni, R. Buonanno, M. Castellani, I. Musella, V. Ripepi, and R. F. Stellingwerf, Astrophys. J. 808, 50 (2015).ADSCrossRefGoogle Scholar
  24. 24.
    E. A. Olivier and P. R. Wood, Mon. Not. R. Astron. Soc. 362, 1396 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    P. T. Oosterhoff, Observatory 62, 104 (1939).ADSGoogle Scholar
  26. 26.
    B. Paxton, J. Schwab, E. B. Bauer, L. Bildsten, S. Blinnikov, P. Duffell, R. Farmer, J. A. Goldberg, et al., Astropys. J. Suppl. Ser. 234, 34 (2018).ADSCrossRefGoogle Scholar
  27. 27.
    D. Reimers, Problems in Stellar Atmospheres and Envelopes, Ed. by B. Baschek, W. H. Kegel, and G. Traving (Springer, New York, 1975), p. 229.CrossRefGoogle Scholar
  28. 28.
    M. Salaris, M. Riello, S. Cassisi, and G. Piotto, Astron. Astrophys. 420, 911 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    R. Smolec and P. Moskalik, Acta Astron. 58, 193 (2008).ADSGoogle Scholar
  30. 30.
    H. C. Spruit, Astron. Astrophys. 582, L2 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    R. F. Stellingwerf, Astrophys. J. 277, 322 (1984).ADSCrossRefGoogle Scholar
  32. 32.
    L. L. Watkins and R. P. van de Marel, Astrophys. J. 839, 89 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    G. Wuchterl and M. U. Feuchtinger, Astron. Astrophys. 340, 419 (1998).ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia

Personalised recommendations