A Water-Vapor Maser Flare in a High-Velocity Line toward W49N


Powerful flares in Galactic kilomasers are closely associated with regions of intense star formation. They contribute to the elucidation of physical processes occurring in these structures. We have recorded a superpowerful flare in the high-velocity −81 km s−1 line in the Galactic maser source W49N. As a result of our monitoring at the RT-22 (Simeiz), RT-32 (Torun), RT-100 (Effelsberg), and RT-32 (Medicina) radio telescopes in the period from September 2017 to November 2018, we have obtained the shape of the spectral flux density variations in the source with time. At the peak the flux density reached P≈5 ×104 Jy. The flare has a double pattern and different durations of its components. The pattern of spectral flux density variations for the first flare with a considerably shorter duration is apparently related to a sharp increase in the density of the medium and the photon flux and to a significant rise in the temperature to hundreds of kelvins. We propose a mechanism of primary energy release related to the existence of close massive multiple systems in star-forming regions. A powerful gravitational perturbation at the system’s periastron can lead to a partial ejection of the envelope of the central massive star in a direction close to the major axis of the ellipse of the companion’s orbit. This explains the significant asymmetry of high-velocity lines in W49N. The ejected envelope is an energy source more significant than the stellar wind and can explain the giant flares in the object. Further comprehensive studies in this direction, including monitoring VLBI studies, are needed to confirm this assumption.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. Baudry, J. R. Foster, and W. J. Welch, Astron. Astrophys. 36, 217 (1974).

    ADS  Google Scholar 

  2. 2.

    R. W. Boyd, Pabl. Astr. Soc. Pacif. 89, 141 (1977).

    ADS  Article  Google Scholar 

  3. 3.

    G. Garay, J. M. Moran, and Haschick, Astron. J. 338, 244 (1989).

    ADS  Article  Google Scholar 

  4. 4.

    R. Genzel, D. Dowens, J. M. Moran, K. J. Johnston, J. H. Spencer, L. I. Matveenko, L. R. Kogan, V. I. Kostenko, et al., Astron. Astrophys. 78, 239 (1979).

    ADS  Google Scholar 

  5. 5.

    P. Goldreich and D. A. Keeley, Astron. J. 174, 517 (1972).

    ADS  Article  Google Scholar 

  6. 6.

    P. Goldreich, D. A. Keeley, and J. J. Kwan, Astrophys. J. 179, 111 (1973).

    ADS  Article  Google Scholar 

  7. 7.

    W. M. Goss, S. H. Knowles, M. Balister, R. A. Batchelor, and K. J. Wellington, Mon. Not. R. Astron. Soc. 174, 541 (1976).

    ADS  Article  Google Scholar 

  8. 8.

    S. F. Gull, Mon. Not. R. Astron. Soc. 161, 47 (1973).

    ADS  Article  Google Scholar 

  9. 9.

    T. M. Heckman and W. T. Sullivan, Astrophys. J. 17, 105 (1976).

    Google Scholar 

  10. 10.

    G. H. Herbig, Astrophys. J. 189, 75 (1974).

    ADS  Article  Google Scholar 

  11. 11.

    K. Inayoshi, K. Sugiyama, and T. Hosokawa, Astrophys. J. 773, 70 (2013).

    Article  Google Scholar 

  12. 12.

    K. J. Knowles, J. M. Johnston, B. F. Morgan, et al., Astron. J. 79, 925 (1974).

    ADS  Article  Google Scholar 

  13. 13.

    A. Kraus, T. P. Krichbaum, R. Wegner, et al., Astron. Astrophys. 401, 161 (2003).

    ADS  Article  Google Scholar 

  14. 14.

    L. V. Kuhi, Astrophys. J. 140, 1409 (1964).

    ADS  Article  Google Scholar 

  15. 15.

    R. B. Larson, Ann. Rev. Astron. Astrophys. 11, 219 (1973).

    ADS  Article  Google Scholar 

  16. 16.

    L. T. Little, G. J. White, and P. W. Riley, Mon. Not. R. Astron. Soc. 180, 639 (1977).

    ADS  Article  Google Scholar 

  17. 17.

    L. I. Matveenko, D. A. Graham, and P. J. Diamond, Sov. Astron. Lett. 14, 468 (1988).

    ADS  Google Scholar 

  18. 18.

    A. Melis, C. Migoni, G. Comoretto, et al., SRT Int. Rep. 52 (2015).

  19. 19.

    J. M. Morgan, M. J. Reid, C. J. Lada, et al., Astron. J. 224, L67 (1978).

    ADS  Article  Google Scholar 

  20. 20.

    N. S. Nesterov, Vol’A. E. vach, I. D. Strepka, et al., Radiofiz. Radioastron. 5, 320 (2000).

    Google Scholar 

  21. 21.

    T. Omodaka, T. Maeda, M. Miyoshi, et al., Publ. Astron. Soc. Jpn. 51, 333 (1999).

    ADS  Article  Google Scholar 

  22. 22.

    S. Yu. Parfenov and A. M. Sobolev, Mon. Not. R. Astron. Soc. 444, 620, 30 (2014).

    ADS  Article  Google Scholar 

  23. 23.

    R. A. Perley and B. J. Butler, Astrophys. J. Suppl. Ser. 204, 19 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    V. Radhakrishnan, W. M. Goss, and R. Bhandari, Pramana 5, 51 (1975).

    ADS  Article  Google Scholar 

  25. 25.

    F. Sato, F. Akabane, and F. J. Kerr, Austral. J. Phys. 20, 197 (1967).

    ADS  Article  Google Scholar 

  26. 26.

    T. Shimoikura, H. Kobayashi, T. Omodaka, et al., Astrophys. J. 634, 459 (2005).

    ADS  Article  Google Scholar 

  27. 27.

    J. Silk and J.R. Burke, Astrophys. J. 190, 11 (1974).

    ADS  Article  Google Scholar 

  28. 28.

    V. I. Slysh, Astrophys. J. 14, 213 (1973).

    Google Scholar 

  29. 29.

    J. H. Spencer and B. F. Burke, Astrophys. J. 185, L83 (1973).

    ADS  Article  Google Scholar 

  30. 30.

    S. E. Strom, G. L. Grasdalen, and K. M. Strom, Astrophys. J. 191, 111 (1974).

    ADS  Article  Google Scholar 

  31. 31.

    W. T. Sullivan, Astrophys. J. Suppl. Ser. 25, 393 (1973).

    ADS  Article  Google Scholar 

  32. 32.

    V. S. Strel’nitskii and R. A. Sunynyaev, Sov. Astron. 16, 579 (1972).

    Google Scholar 

  33. 33.

    D.A. Varshalovich, A. V. Ivanchik, and N. S. Babkovskaya, Astron. Lett. 32, 29 (2006).

    ADS  Article  Google Scholar 

  34. 34.

    A. E. Volvach, L. N. Volvach, I. D. Strepka, et al., Izv. Krymsk. Astrofiz. Observ. 104, 72 (2009).

    Google Scholar 

  35. 35.

    L. N. Volvach, A. E. Volvach, M. G. Larionov, G. C. MacLeod, S. P. van den Heever, P. Wolak, and M. Olech, Mon. Not. R. Astron. Soc. 482, L90 (2019a).

    ADS  Article  Google Scholar 

  36. 36.

    L. N. Volvach, A. E. Volvach, M. G. Larionov, et al., Astron. Rep. 63, 49 (2019b).

    ADS  Article  Google Scholar 

  37. 37.

    C. G. Wynn-Williams, Mon. Not. R. Astron. Soc. 151, 397 (1971).

    ADS  Article  Google Scholar 

  38. 38.

    B. Zhang, M. J. Read, R. M. Menten, et al., Astrophys. J. 79, 13 (2013).

    Google Scholar 

Download references


We thank the National Science Center of Poland, grant no. 2016/21/B/ST9/01455.

Author information



Corresponding author

Correspondence to L. N. Volvach.

Additional information

Russian Text © The Author(s), 2019, published in Pis’ma v Astronomicheskii Zhurnal, 2019, Vol. 45, No. 5, pp. 367–376.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volvach, L.N., Volvach, A.E., Larionov, M.G. et al. A Water-Vapor Maser Flare in a High-Velocity Line toward W49N. Astron. Lett. 45, 321–330 (2019). https://doi.org/10.1134/S1063773719050074

Download citation


  • star formation
  • radio lines
  • masers