Astronomy Letters

, Volume 45, Issue 2, pp 71–80 | Cite as

Wind of Presupernova IIn SN 1997eg

  • N. N. ChugaiEmail author


Spectra and phototometry of type IIn supernova SN 1997eg are used to determine properties of the circumstellar gas lost by the presupernova during the latest 200 years before the explosion. The analysis of narrow Hα and [Fe X] 6374 Å results in the wind velocity u = 20 km s−1, significantly lower than the earlier accepted value (160 km s−1) upon the bases of the radial velocity of a blue absorption wing of the narrow Hα. That high velocity of the wind in our picture is related to the preshock gas accelerated by the cosmic ray precursor. The modelling of the circumstellar interaction results in the wind density parameter Ṁ/u that being combined with the wind velocity suggests the presupernova mass loss rate of 1.6 × 10−3M yr−1. The wind density is consistent with the [Fe X] 6374 Å luminosity. The model Hα luminosity also agrees with the observational value. Recovered wind properties indicate that the presupernova at the final evolutionary stage was a massive red supergiant with a high mass loss rate, but not the LBV-supergiant as suggested earlier.


stars—evolution supernovae cosmic rays 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Aggarwal and F. P. Keenan, Astron. Astrophys. 431, 1215 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    J. M. Blondin and D. C. Ellison, Astrophys. J. 560, 244 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    H. Böhringer, Lecture Notes in Physics 506, 341 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    A. Burgess and M. J. Seaton, Mon. Not. R. Astron. Soc. 127, 355 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    N. N. Chugai, Mon. Not. R. Astron. Soc. 400, 866 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    N. N. Chugai and I. J. Danziger, Mon. Not. R. Astron. Soc. 268, 173 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    N. N. Chugai, S. I. Blinnikov, A. Fassia, P. Lundqvist, W. P. S. Meikle, E. I. Sorokina, Mon. Not. R. Astron. Soc. 330, 473 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    N. N. Chugai, R. A. Chevalier, and P. Lundqvist, Mon. Not. R. Astron. Soc. 355, 627 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    R. A. Chevalier, Astrophys. J. 259, 302 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    R. A. Chevalier, Astrophys. J. 499, 810 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    R. A. Chevalier and J. M. Blondin, Astrophys. J. 444, 312 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    L. O’C. Drury and J. H. Völk, Astrophys. J. 248, 344 (1981).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Filippenko and A. J. Barth, IAUC 6794, 1 (1997).ADSGoogle Scholar
  14. 14.
    A. V. Filippenko, Supernovae (Springer Verlag, New York, 1991), p. 467.CrossRefGoogle Scholar
  15. 15.
    R. J. Foley, E. Berger, O. Fox, et al., Astrophys. J. 732, 32 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    B. P. Gerasimovič, Zeitschrift für Astrophysik 7, 335 (1933).ADSGoogle Scholar
  17. 17.
    J. L. Giuliani, Astrophys. J. 245, 903 (1981).ADSCrossRefGoogle Scholar
  18. 18.
    E. A. Helder, J. Vink, C. G. Bassa, et al., Science 325, 719 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    J. Hoffman, D. C. Leonard, R. Chornock, A. V. Filippenko, A. J. Barth, and T. Matheson, Astrophys. J. 688, 118 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    R. I. Klein, C. F. McKee, and P. Colella, Astrophys. J. 420, 213 (1994).ADSCrossRefGoogle Scholar
  21. 21.
    R. Kotak, W. P. S. Meikle, A. Adamson, and S. K. Leggett, Mon. Not. R. Astron. Soc. 354, L13 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    C. K. Lacey, K. W. Weiler, R. A. Sramek, and C. D. van Dyk, IAUC, 7068 (1998).Google Scholar
  23. 23.
    J.-J. Lee, B.-C. Koo, J. Raymond, et al., Astrophys. J. 659, 133 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    P. Massey and K. A. Evans, Astrophys. J. 826, 224 (2016).ADSCrossRefGoogle Scholar
  25. 25.
    S. Nakano and M. Aoki, IAU Circ. 6790 (1997).Google Scholar
  26. 26.
    D. E. Osterbrock, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley, California, University Science Books, 1989), p. 19.CrossRefGoogle Scholar
  27. 27.
    A. Pastorello, E. Cappellaro, C. Inserra, et al., Astrophys. J. 767, 1 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    I. Salamanca, R. J. Terlevich, and G. Tenorio-Tagle, Mon. Not. R. Astron. Soc. 330, 844 (2002).ADSCrossRefGoogle Scholar
  29. 29.
    B. Salasnich, A. Bressan, and C. Chiosi, Astron. Astrophys. 342, 131 (1999).ADSGoogle Scholar
  30. 30.
    N. Smith and R. McCray, Astrophys. J. 671, 17 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    R. A. Stathakis and E. M. Sadler, Mon. Not. R. Astron. Soc. 250, 786 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    D. Yu. Tsvetkov and N. N. Pavlyuk, Aston. Lett. 30, 32 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    S. E. Woosley, S. I. Blinnikov, and A. Heger, Nature 450, 390 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    S. E. Woosley, A. Heger, and T. A. Weaver, Rev. Mod. Phys. 74, 1015 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    O. Yaron and A. Gal-Yam, Publ. Astron. Soc. Pacific 124, 668 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia

Personalised recommendations