Skip to main content
Log in

Numerical Study of Statistical Properties of the Galactic Center Distance Estimate from the Geometry of Spiral Arm Segments

Astronomy Letters Aims and scope Submit manuscript

Abstract

The influence of various factors on the statistical properties of the Galactic center distance (R0) estimate obtained by solving the general problem of determining the geometric parameters of a Galactic spiral arm from its segment with the inclusion of the distance to the spiral pole, i.e., R0, in the set of parameters has been studied by the Monte Carlo method. Our numerical simulations have been performed for the model segments representing the Perseus and Scutum arms based on masers in high-mass star forming regions. We show that the uncertainty in the present-day parallax measurements for these objects systematically decreases (!) with increasing heliocentric distance, while the relative uncertainty in the parallaxes is, on average, approximately constant. This lucky circumstance increases significantly (by a factor of 1.4–1.7) the accuracy of estimating R0 from the arm segment traced by masers. Our numerical experiments provide evidence for the consistency of the R0 estimate from the spiral-segment geometry. The significant biases of the estimate detected only for the Scutum arm are caused mainly by the random parallax errors, the small angular extent of the segment, and the small number of objects representing it. The dispersion of the R0 estimate depends most strongly on the angular extent of the segment and the parallax uncertainty if the latter, on average, does not depend on the distance. The remaining parameters, except for the pitch angle, exert an equally significant, but weaker influence on the statistical accuracy of the estimate. When the data on 3–8 segments are processed simultaneously, the predicted standard error of the final estimate is σR0 ≃ 0.5−0.3 kpc, respectively. The accuracy can be improved by increasing the extent of the identified segments and the number of objects belonging to them. The method of determining R0 from spiral segments has turned out to be operable for a wide set of possible parameters even when using an L-estimator (median). This makes the development of a more complex method based on an M-estimator, which allows one to properly take into account the measuring and natural dispersions of objects relative to the arm center line and, thus, to avoid the biases of the parameter estimates, meaningful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. J. Bland-Hawthorn and O. Gerhard, Ann. Rev. Astron. Astrophys. 54, 529 (2016).

    Article  ADS  Google Scholar 

  2. T. Camarillo, V. Mathur, T. Mitchell, and B. Ratra, Publ. Astron. Soc. Pacif. 130, 024101 (2018).

    Article  ADS  Google Scholar 

  3. X. Chen, S. Wang, L. Deng, and R. de Grijs, Astrophys. J. 859, 137 (2018).

    Article  ADS  Google Scholar 

  4. A. K. Dambis, L. N. Berdnikov, Yu. N. Efremov, A. Yu. Kniazev, A. S. Rastorguev, E. V. Glushkova, V. V. Kravtsov, D. G. Turner, et al., Astron. Lett. 41, 489 (2015).

    Article  ADS  Google Scholar 

  5. G. S. Fishman and L. R. Moore, SIAM J. Sci. Stat. Comput. 7, 24 (1986).

    Article  Google Scholar 

  6. R. de Grijs and G. Bono, Astrophys. J. Suppl. Ser. 227, 5 (2016).

    Article  ADS  Google Scholar 

  7. E. Griv, I.-G. Jiang, and L.-G. Hou, Astrophys. J. 844, 118 (2017).

    Article  ADS  Google Scholar 

  8. A. I. Kobzar’, AppliedMathematical Statistics. For Engineers and Scientists (Fizmatlit,Moscow, 2006) [in Russian].

    Google Scholar 

  9. V. Krishnan, S. P. Ellingsen, M. J. Reid, H. E. Bignall, J. McCallum, C. J. Phillips, C. Reynolds, and J. Stevens, Mon. Not. R. Astron. Soc. 465, 1095 (2017).

    Article  ADS  Google Scholar 

  10. D. Majaess, I. Dékány, G. Hajdu, D. Minniti, D. Turner, and W. Gieren, Astrophys. Space Sci. 363, 127 (2018).

    Article  ADS  Google Scholar 

  11. F. Mignard, Astron. Astrophys. 354, 522 (2000).

    ADS  Google Scholar 

  12. I. I. Nikiforov, Astron. Rep. 43, 345 (1999).

    ADS  Google Scholar 

  13. I. I. Nikiforov, ASP Conf. Ser. 209, 403 (2000).

    ADS  Google Scholar 

  14. I. I. Nikiforov, ASP Conf. Ser. 316, 199 (2004).

    ADS  Google Scholar 

  15. I. I. Nikiforov and E. E. Kazakevich, Izv.GAO219 (4), 245 (2009).

    Google Scholar 

  16. I. I. Nikiforov and O. V. Smirnova, Astron. Nachr. 334, 749 (2013).

    Article  ADS  Google Scholar 

  17. I. I. Nikiforov and A. V. Veselova, Baltic Astron. 24, 387 (2015).

    ADS  Google Scholar 

  18. I. I. Nikiforov and A. V. Veselova, Astron. Lett. 44, 81 (2018).

    Article  ADS  Google Scholar 

  19. M. E. Popova and A. V. Loktin, Astron. Lett. 31, 171 (2005).

    Article  ADS  Google Scholar 

  20. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge Univ. Press, Cambridge, UK, 1997).

    MATH  Google Scholar 

  21. A. S. Rastorguev, N. D. Utkin, M. V. Zabolotskikh, A. K. Dambis, A. T. Bajkova, and V. V. Bobylev, Astrophys. Bull. 72, 122 (2017).

    Article  ADS  Google Scholar 

  22. M. J. Reid, private commun. (2014).

    Google Scholar 

  23. M. J. Reid, K. M. Menten, A. Brunthaler, X. W. Zheng, T. M. Dame, Y. Xu, Y. Wu, B. Zhang, et al., Astrophys. J. 783, 130 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Nikiforov.

Additional information

Original Russian Text © I.I. Nikiforov, A.V. Veselova, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, No. 11, pp. 763–783.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikiforov, I.I., Veselova, A.V. Numerical Study of Statistical Properties of the Galactic Center Distance Estimate from the Geometry of Spiral Arm Segments. Astron. Lett. 44, 699–719 (2018). https://doi.org/10.1134/S106377371811004X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377371811004X

Keywords

Navigation