Skip to main content
Log in

New Features of Parenago’s Discontinuity from Gaia DR1 Data

Astronomy Letters Aims and scope Submit manuscript

Abstract

The velocity field of main-sequence stars and red giants from the TGAS catalogue with heliocentric distances up to 1.5 kpc has been analyzed for various spectral types. To estimate the influence of a low accuracy of stellar parallax measurements on the results of a kinematic analysis of distant stars, first we have studied in detail how the kinematic parameters derived with 1/π distances are shifted when these distances are replaced by three other versions of distances from Astraatmadja et al. (2016b). We have obtained detailed tables in which the ranges of these shifts in the Ogorodnikov–Milne and Bottlinger model parameters are shown for the stars of each spectral type. We have the smallest shifts in the case of determining the Oort coefficients A and B, for which there are 10% shifts only for main-sequence stars of spectral type B. In the remaining cases, these shifts are 0–3%. For the remaining parameters the shifts do not exceed 30%. Thus, we have shown that using the 1/π distance scale in estimating the Ogorodnikov–Milne and Bottlingermodel parameters (except for the parameter Ω″0) yields reliable results even when using parallaxes with large relative errors (up to 60%). To study Parenago’s discontinuity, we have investigated the dependence of the Ogorodnikov–Milne and Bottlinger model parameters on color for 1 260 071 mainsequence stars and 534 387 red giants. As far as we know, such a data set is used for the first time to investigate Parenago’s discontinuity. The main result is the detection of maximum points at BV = 0.75 after which the solar velocity component V and the Oort coefficient B decrease when moving from blue stars to red ones. This fact is a new feature of Parenago’s discontinuity, because the component V does not change in the classical case at BV >0.6. We have made an attempt to represent the well-known Parenago’s discontinuity as a special case of the more complex effect of a gradual change in a number of kinematic parameters as the mean age and composition of the group of stars under study changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Arenou, ASP Conf. Ser. 167 (1999).

  2. Astraatmadja, L. Tri, Bailer Jones, and A. L. Coryn, Astrophys. J. 832, 137 (2016a).

    Article  Google Scholar 

  3. Astraatmadja, L. Tri, Bailer Jones, and A. L. Coryn, Astrophys. J. 833, 119 (2016b).

    Article  ADS  Google Scholar 

  4. C. A. L. Bailerjones, Publ. Astron. Soc. Pacif. 127, 994 (2015).

    Article  ADS  Google Scholar 

  5. V. V. Bobylev and A. T. Bajkova, Astron. Rep. 51, 372 (2007).

    Article  ADS  Google Scholar 

  6. Jo Bovy, Mon. Not. R. Astron. Soc. Lett. 468, L63 (2017).

    Article  ADS  Google Scholar 

  7. W. Dehnen and J. J. Binney, Mon. Not. R. Astron. Soc. 298, 387 (1998).

    Article  ADS  Google Scholar 

  8. E. V. Drobit’ko, V. V. Vityazev, Astrofizika 46 (2) (2003).

    Google Scholar 

  9. A. A. Henden, S. Levine, D. Terrell, and D. L. Welch, Am. Astron. Soc. Meet. 225, 336.16 (2015).

    ADS  Google Scholar 

  10. P. G. Kulikovskii, Stellar Astronomy (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  11. L. Lindegren, U. Lammers, U. Bastian, et al., Astron. Astrophys. 595, 323 (2016).

    Article  Google Scholar 

  12. T. E. Lutz and D. H. Kelker, Publ. Astron. Soc. Pacif. 85, 573 (1973).

    Article  ADS  Google Scholar 

  13. D. Mihalas and J. Binney, Galactic Astronomy. Structure and Kinematics, 2nd ed. (ASP, San Francisco, 1981).

    Google Scholar 

  14. M. Miyamoto, M. Soma, and M. Yokoshima, Astron. J. 105, 2138 (1993).

    Article  ADS  Google Scholar 

  15. B. A. duMont, Astron. Astrophys. 61, 127 (1977).

    ADS  Google Scholar 

  16. K. F. Ogorodnikov, Dynamics of Stellar Systems (Fizmatgiz, Moscow, 1965) [in Russian].

    MATH  Google Scholar 

  17. P. P. Parenago, Astron. Zh. 27, 150 (1950).

    Google Scholar 

  18. M. Sekiguchi and M. Fukugita, Astron. J. 120, 1072 (2000).

    Article  ADS  Google Scholar 

  19. H. Smith, Jr. and H. Eichhorn, Mon. Not. R. Astron. Soc. 281, 211 (1996).

    Article  ADS  Google Scholar 

  20. Hai-Jun Tian, Chao Liu, J. Carlin, Yong-Heng Zhao, Xue-Lei Chen, Yue Wu, G.-W. Li, Y.-H. Hou, and Y. Zhang, Astrophys. J. 809, 145 (2015).

    Article  ADS  Google Scholar 

  21. J. Torra, D. Fernandez, and F. Figueras, Astron. Astrophys. 359, 82 (2000).

    ADS  Google Scholar 

  22. J. P. Vallee, Astrophys. Space Sci. 364, 79 (2017).

    Article  ADS  Google Scholar 

  23. V. V. Vityazev and A. S. Tsvetkov, Astron. Lett. 38, 411 (2012).

    Article  ADS  Google Scholar 

  24. V. V. Vityazev, A. V. Popov, A. S. Tsvetkov, S. D. Petrov, D. A. Trofimov, and V. I. Kiyaev, Astron. Lett. 44, 236 (2018).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Vityazev.

Additional information

Original Russian Text © V.V. Vityazev, A.V. Popov, A.S. Tsvetkov, S.D. Petrov, D.A. Trofimov, V.I. Kiyaev, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, No. 10, pp. 688–704.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vityazev, V.V., Popov, A.V., Tsvetkov, A.S. et al. New Features of Parenago’s Discontinuity from Gaia DR1 Data. Astron. Lett. 44, 629–644 (2018). https://doi.org/10.1134/S1063773718100080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773718100080

Keywords

Navigation