Advertisement

Astronomy Letters

, Volume 44, Issue 10, pp 629–644 | Cite as

New Features of Parenago’s Discontinuity from Gaia DR1 Data

  • V. V. VityazevEmail author
  • A. V. Popov
  • A. S. Tsvetkov
  • S. D. Petrov
  • D. A. Trofimov
  • V. I. Kiyaev
Article

Abstract

The velocity field of main-sequence stars and red giants from the TGAS catalogue with heliocentric distances up to 1.5 kpc has been analyzed for various spectral types. To estimate the influence of a low accuracy of stellar parallax measurements on the results of a kinematic analysis of distant stars, first we have studied in detail how the kinematic parameters derived with 1/π distances are shifted when these distances are replaced by three other versions of distances from Astraatmadja et al. (2016b). We have obtained detailed tables in which the ranges of these shifts in the Ogorodnikov–Milne and Bottlinger model parameters are shown for the stars of each spectral type. We have the smallest shifts in the case of determining the Oort coefficients A and B, for which there are 10% shifts only for main-sequence stars of spectral type B. In the remaining cases, these shifts are 0–3%. For the remaining parameters the shifts do not exceed 30%. Thus, we have shown that using the 1/π distance scale in estimating the Ogorodnikov–Milne and Bottlingermodel parameters (except for the parameter Ω″0) yields reliable results even when using parallaxes with large relative errors (up to 60%). To study Parenago’s discontinuity, we have investigated the dependence of the Ogorodnikov–Milne and Bottlinger model parameters on color for 1 260 071 mainsequence stars and 534 387 red giants. As far as we know, such a data set is used for the first time to investigate Parenago’s discontinuity. The main result is the detection of maximum points at BV = 0.75 after which the solar velocity component V and the Oort coefficient B decrease when moving from blue stars to red ones. This fact is a new feature of Parenago’s discontinuity, because the component V does not change in the classical case at BV >0.6. We have made an attempt to represent the well-known Parenago’s discontinuity as a special case of the more complex effect of a gradual change in a number of kinematic parameters as the mean age and composition of the group of stars under study changes.

Keywords

proper motions Gaia DR1 TGAS Galactic kinematics Parenago’s discontinuity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Arenou, ASP Conf. Ser. 167 (1999).Google Scholar
  2. 2.
    Astraatmadja, L. Tri, Bailer Jones, and A. L. Coryn, Astrophys. J. 832, 137 (2016a).CrossRefGoogle Scholar
  3. 3.
    Astraatmadja, L. Tri, Bailer Jones, and A. L. Coryn, Astrophys. J. 833, 119 (2016b).ADSCrossRefGoogle Scholar
  4. 4.
    C. A. L. Bailerjones, Publ. Astron. Soc. Pacif. 127, 994 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    V. V. Bobylev and A. T. Bajkova, Astron. Rep. 51, 372 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    Jo Bovy, Mon. Not. R. Astron. Soc. Lett. 468, L63 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    W. Dehnen and J. J. Binney, Mon. Not. R. Astron. Soc. 298, 387 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    E. V. Drobit’ko, V. V. Vityazev, Astrofizika 46 (2) (2003).Google Scholar
  9. 9.
    A. A. Henden, S. Levine, D. Terrell, and D. L. Welch, Am. Astron. Soc. Meet. 225, 336.16 (2015).ADSGoogle Scholar
  10. 10.
    P. G. Kulikovskii, Stellar Astronomy (Nauka, Moscow, 1985) [in Russian].Google Scholar
  11. 11.
    L. Lindegren, U. Lammers, U. Bastian, et al., Astron. Astrophys. 595, 323 (2016).CrossRefGoogle Scholar
  12. 12.
    T. E. Lutz and D. H. Kelker, Publ. Astron. Soc. Pacif. 85, 573 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    D. Mihalas and J. Binney, Galactic Astronomy. Structure and Kinematics, 2nd ed. (ASP, San Francisco, 1981).Google Scholar
  14. 14.
    M. Miyamoto, M. Soma, and M. Yokoshima, Astron. J. 105, 2138 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    B. A. duMont, Astron. Astrophys. 61, 127 (1977).ADSGoogle Scholar
  16. 16.
    K. F. Ogorodnikov, Dynamics of Stellar Systems (Fizmatgiz, Moscow, 1965) [in Russian].zbMATHGoogle Scholar
  17. 17.
    P. P. Parenago, Astron. Zh. 27, 150 (1950).Google Scholar
  18. 18.
    M. Sekiguchi and M. Fukugita, Astron. J. 120, 1072 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    H. Smith, Jr. and H. Eichhorn, Mon. Not. R. Astron. Soc. 281, 211 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    Hai-Jun Tian, Chao Liu, J. Carlin, Yong-Heng Zhao, Xue-Lei Chen, Yue Wu, G.-W. Li, Y.-H. Hou, and Y. Zhang, Astrophys. J. 809, 145 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    J. Torra, D. Fernandez, and F. Figueras, Astron. Astrophys. 359, 82 (2000).ADSGoogle Scholar
  22. 22.
    J. P. Vallee, Astrophys. Space Sci. 364, 79 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    V. V. Vityazev and A. S. Tsvetkov, Astron. Lett. 38, 411 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    V. V. Vityazev, A. V. Popov, A. S. Tsvetkov, S. D. Petrov, D. A. Trofimov, and V. I. Kiyaev, Astron. Lett. 44, 236 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. V. Vityazev
    • 1
    Email author
  • A. V. Popov
    • 1
  • A. S. Tsvetkov
    • 1
  • S. D. Petrov
    • 1
  • D. A. Trofimov
    • 1
  • V. I. Kiyaev
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations