Astronomy Letters

, Volume 44, Issue 4, pp 248–264 | Cite as

Kinematics of B-F Stars as a Function of Their Dereddened Color from Gaia and PCRV Data

  • G. A. Gontcharov


Parallaxes with an accuracy better than 10% and proper motions from the Gaia DR1 TGAS catalogue, radial velocities from the Pulkovo Compilation of Radial Velocities (PCRV), accurate Tycho-2 photometry, theoretical PARSEC, MIST, YaPSI, BaSTI isochrones, and the most accurate reddening and interstellar extinction estimates have been used to analyze the kinematics of 9543 thin-disk B-F stars as a function of their dereddened color. The stars under consideration are located on the Hertzsprung–Russell diagram relative to the isochrones with an accuracy of a few hundredths of a magnitude, i.e., at the level of uncertainty in the parallax, photometry, reddening, extinction, and the isochrones themselves. This has allowed us to choose the most plausible reddening and extinction estimates and to conclude that the reddening and extinction were significantly underestimated in some kinematic studies of other authors. Owing to the higher accuracy of TGAS parallaxes than that of Hipparcos ones, the median accuracy of the velocity components U, V, W in this study has improved to 1.7 km s−1, although outside the range −0.1 m < (B T V T )0 < 0.5 m the kinematic characteristics are noticeably biased due to the incompleteness of the sample. We have confirmed the variations in the mean velocity of stars relative to the Sun and the stellar velocity dispersion as a function of their dereddened color known from the Hipparcos data. Given the age estimates for the stars under consideration from the TRILEGAL model and the Geneva–Copenhagen survey, these variations may be considered as variations as a function of the stellar age. A comparison of our results with the results of other studies of the stellar kinematics near the Sun has shown that selection and reddening underestimation explain almost completely the discrepancies between the results. The dispersions and mean velocities from the results of reliable studies fit into a ±2 km s−1 corridor, while the ratios σ V /σ U and σ W /σ U fit into ±0.05. Based on all reliable studies in the range −0.1 m < (B T V T )0 < 0.5m, i.e., for an age from 0.23 to 2.4 Gyr, we have found: W = 7.15 km s−1, \({\sigma _U} = 16.0{e^{1.29({B_T} - {V_T})o}}\) , \({\sigma _V} = 10.9{e^{1.11({B_T} - {V_T})o}}\) , \({\sigma _W} = 6.8{e^{1.46({B_T} - {V_T})o}}\) , the stellar velocity dispersions in km s−1 are proportional to the age in Gyr raised to the power β U = 0.33, β V = 0.285, and β W = 0.37.


Hertzsprung–Russell diagram stellar kinematics Galactic solar neighborhoods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Abergel, P. A. R. Ade, N. Aghanim, M. I. R. Alves, G. Aniano, C. Armitage-Caplan, M. Arnaud, et al. (Planck Collab.), Astron. Astrophys. 571, A11 (2014).CrossRefGoogle Scholar
  2. 2.
    T. Aghajani and L. Lindegren, Astron. Astrophys. 551, A9 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    F. Arenou, M. Grenon, and A. Gómez, Astron. Astrophys. 258, 104 (1992).ADSGoogle Scholar
  4. 4.
    T.-L. Astraatmadja and C. A. L. Bailer-Jones, Astrophys. J. 833, 119 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    M. Aumer and J. J. Binney, Mon. Not. R. Astron. Soc. 397, 1286 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    M. Aumer, J. Binney, and R. Schönrich, Mon. Not. R. Astron. Soc. 462, 1697 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    J. Bovy, Mon. Not. R. Astron.Soc. 468, 63 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    A. Bressan, P. Marigo, L. Girardi, B. Salasnich, C. dal Cero, S. Rubele, and A. Nanni, Mon. Not. R. Astron. Soc. 427, 127 (2012). Scholar
  9. 9.
    A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, F. Mignard, R. Drimmel, C. Babusiaux, C. A. L. Bailer-Jones, et al. (GAIA Collab.), Astron. Astrophys. 595, A2 (2016).CrossRefGoogle Scholar
  10. 10.
    J. A. Cardelli, G. C. Clayton, and J. S. Mathis, Astrophys. J. 345, 245 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    L. Casagrande, R. Schönrich, M. Asplund, S. Cassisi, I. Rami´rez, J. Meléndez, T. Bensby, and S. Feltzing, Astron. Astrophys. 530, A138 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Choi, A. Dotter, C. Conroy, M. Cantiello, B. Paxton, and B. D. Johnson, Astrophys. J. 823, 102 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    M. A. Czekaj, A. C. Robin, F. Figueras, X. Luri, and M. Haywood, Astron. Astrophys. 564, A102 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    W. Dehnen and J. Binney, Mon. Not. R. Astron. Soc. 294, 429 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    A. Dotter, Astrophys. J. Supp. Ser. 222, 8 (2016), Scholar
  16. 16.
    ESA, Hipparcos and Tycho Catalogues (ESA, 1997).Google Scholar
  17. 17.
    B. Famaey, A. Jorissen, X. Luri, M. Mayor, S. Udry, H. Dejonghe, and C. Turon, Astron. Astrophys. 430, 165 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    C. Francis and E. Anderson, New Astron. 14, 615 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    L. Girardi, M. A. T. Groenewegen, E. Hatziminaoglou, and L. da Costa, Astron. Astrophys. 436, 895 (2005). Scholar
  20. 20.
    A. E. Gómez, S. Grenier, S. Udry, M. Haywood, L. Meillon, V. Sabas, A. Sellier, and D. Morin, in Proceedings of the ESA Symposium on Hipparcos–Venice 97, Ed. by B. Battrick, ESA SP-402 (ESA Publ., Noordwijk, Netherlands, 1997), p. 621.Google Scholar
  21. 21.
    G. A. Gontcharov, Astron. Lett. 32, 759 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    G. A. Gontcharov, Astron. Lett. 33, 390 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    G. A. Gontcharov, Astron. Lett. 35, 638 (2009a).ADSCrossRefGoogle Scholar
  24. 24.
    G. A. Gontcharov, Astron. Lett. 35, 780 (2009b).ADSCrossRefGoogle Scholar
  25. 25.
    G. A. Gontcharov, Astron. Lett. 37, 707 (2011).ADSCrossRefGoogle Scholar
  26. 26.
    G. A. Gontcharov, Astron. Lett. 38, 12 (2012a).ADSCrossRefGoogle Scholar
  27. 27.
    G. A. Gontcharov, Astron. Lett. 38, 87 (2012b).ADSCrossRefGoogle Scholar
  28. 28.
    G. A. Gontcharov, Astron. Lett. 38, 771 (2012c).ADSCrossRefGoogle Scholar
  29. 29.
    G. A. Gontcharov, Astron. Lett. 43, 472 (2017a).ADSCrossRefGoogle Scholar
  30. 30.
    G. A. Gontcharov, Astron. Lett. 43, 545 (2017b).ADSCrossRefGoogle Scholar
  31. 31.
    G. A. Gontcharov and A. T. Bajkova, Astron. Lett. 39, 689 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 470, L97 (2017a).ADSCrossRefGoogle Scholar
  33. 33.
    G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 472, 3805 (2017b).ADSCrossRefGoogle Scholar
  34. 34.
    G. A. Gontcharov, A. A. Andronova, O. A. Titov, and E. V. Kornilov, Astron. Astrophys. 365, 222 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    G. A. Gontcharov, A. T. Bajkova, P. N. Fedorov, and V. S. Akhmetov, Mon. Not. R. Astron. Soc. 413, 1581 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    G. M. Green, E. F. Schlafly, D. P. Finkbeiner, H.-W. Rix, N. Martin, W. Burgett, P. W. Draper, et al., Astrophys. J. 810, 25 (2015). Scholar
  37. 37.
    M. Haywood, Mon. Not. R. Astron. Soc. 371, 1760 (2006).ADSCrossRefGoogle Scholar
  38. 38.
    E. Høg, C. Fabricius, V. V. Makarov, S. Urban, T. Corbin, G. Wycoff, U. Bastian, P. Schwekendiek, and A. Wicenecet, Astron. Astrophys. 355, L27 (2000).ADSGoogle Scholar
  39. 39.
    J. Holmberg, B. Nordström, and J. Andersen, Astron. Astrophys. 475, 519 (2007).ADSCrossRefGoogle Scholar
  40. 40.
    J. Holmberg, B. Nordström, and J. Andersen, Astron. Astrophys. 501, 941 (2009).ADSCrossRefGoogle Scholar
  41. 41.
    N. V. Kharchenko, R.-D. Scholz, A. E. Piskunov, S. Röser, and E. Schilbach, Astron. Nachr. 328, 889 (2007).ADSCrossRefGoogle Scholar
  42. 42.
    P. G. Kulikovskii, Stellar Astronomy (Nauka, Moscow, 1985) [in Russian].Google Scholar
  43. 43.
    A. Kunder, G. Kordopatis, M. Steinmetz, T. Zwitter, P. J. McMillan, L. Casagrande, H. Enke, J. Wojno, et al., Astron. J. 153, 75 (2017), http://www.ravesurvey. org.ADSCrossRefGoogle Scholar
  44. 44.
    F. van Leeuwen, Astron. Astrophys. 474, 653 (2007).ADSCrossRefGoogle Scholar
  45. 45.
    A. M. Meisner and D. P. Finkbeiner, Astrophys. J. 798, 88 (2015).ADSCrossRefGoogle Scholar
  46. 46.
    D. Michalik, L. Lindegren, and D. Hobbs, Astron. Astrophys. 574, A115 (2015).ADSCrossRefGoogle Scholar
  47. 47.
    F. Mignard, Astron. Astrophys. 354, 522 (2000).ADSGoogle Scholar
  48. 48.
    B. Nordström, M. Mayor, J. Andersen, J. Holmberg, F. Pont, B. R. Jørgensen, E. H. Olsen, S. Udry, et al., Astron. Astrophys. 418, 989 (2004).ADSCrossRefGoogle Scholar
  49. 49.
    P. P. Parenago, A Course in Stellar Astronomy (GITTL,Moscow, 1954) [in Russian].Google Scholar
  50. 50.
    B.Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, and F. Timmes, Astrophys. J. Supp. Ser. 192, 3 (2011).ADSCrossRefGoogle Scholar
  51. 51.
    M. Perryman, Astronomical Applications of Astrometry (Cambridge Univ. Press, Cambridge, 2009).Google Scholar
  52. 52.
    A. Pietrinferni, S. Cassisi, M. Salaris, and F. Castelli, Astrophys. J. 612, 168 (2004). http://basti.oateramo. Scholar
  53. 53.
    A. C. Robin, C. Reylé, S. Derrie`re, and S. Picaud, Astron. Astrophys. 409, 523 (2003).ADSCrossRefGoogle Scholar
  54. 54.
    D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500, 525 (1998).ADSCrossRefGoogle Scholar
  55. 55.
    S. Sharma, J. Bland-Hawthorn, J. Binney, K. C. Freeman, M. Steinmetz, C. Boeche, O. Bienaymé, B. K. Gibson, G. F. Gilmore, et al., Astrophys. J. 793, 51 (2014).ADSCrossRefGoogle Scholar
  56. 56.
    M. F. Skrutskie, R. M. Cutri, R. Stiening, M. D. Weinberg, S. Schneider, J. M. Carpenter, C. Beichman, R. Capps, et al., Astron. J. 131, 1163 (2006). releases/allsky/index.html.ADSCrossRefGoogle Scholar
  57. 57.
    F. Spada, P. Demarque, Y.-C. Kim, T. S. Boyajian, and J. M. Brewer, Astrophys. J. 838, 161 (2017). Scholar
  58. 58.
    H.-J. Tian, C. Liu, J. L. Carlin, Y.-H. Zhao, X.-L. Chen, Y. Wu, G.-W. Li, Y.-H. Hou, and Y. Zhang, Astrophys. J. 809, 145 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Pulkovo Astronomical ObservatoryRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations