Skip to main content
Log in

Simulations of the Dynamics of the Debris Disks in the Systems Kepler-16, Kepler-34, and Kepler-35

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We investigate the long-term dynamics of planetesimals in debris disks in models with the parameters of the binary star systems Kepler-16, Kepler-34, and Kepler-35 with planets. Our calculations show that the formation of a stable ring coorbital with the planet is possible for Kepler-16 and Kepler-35. In Kepler-34 significant orbital eccentricities of the binary system and the planet can prevent the formation of such a structure. The detection of circumbinary ring-like structures in observations of binary star systems can be evidence for the existence of planets retaining coorbital rings of dust and planetesimals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Alexandersen, B. Gladman, S. Greenstreet, J. J. Kavelaars, J.-M. Petit, and G. Stephenet, Science 341, 994 (2013).

    Article  ADS  Google Scholar 

  2. J.-C. Augereau, in Extrasolar Planets: Today and Tomorrow, Ed. by J. Beaulieu, A. Lecavelier des Etangs, and C. Terquem, ASP Conf. Proc. 321, 305 (2004).

    ADS  Google Scholar 

  3. H. Beust, J.-C. Augereau, A. Bonsor, J. R. Graham, P. Kalas, J. Lebreton, A.-M. Lagrange, S. Ertel, et al., Astron. Astrophys. 561, A43 (2014).

    Article  Google Scholar 

  4. E. Bowell, H. E. Holt, D. H. Levy, K. A. Innanen, S. Mikkola, and E. M. Shoemaker, Bull. Am. Astron. Soc. 22, 1357 (1990).

    ADS  Google Scholar 

  5. S. Chandrasekhar, Principles of Stellar Dynamics (Univ. Chicago Press, Chicago, 1942), p. 72.

    MATH  Google Scholar 

  6. E. I. Chiang, E. Kite, P. Kalas, J. R. Graham, and M. Clampin, Astrophys. J. 693, 734 (2009).

    Article  ADS  Google Scholar 

  7. M. Connors, P. Wiegert, and C. Veillet, Nature 475, 481 (2011).

    Article  ADS  Google Scholar 

  8. T. V. Demidova and I. I. Shevchenko, Astrophys. J. 805, 38 (2015).

    Article  ADS  Google Scholar 

  9. T. V. Demidova and I. I. Shevchenko, Mon. Not. R. Astron. Soc. 463, L22 (2016).

    Article  ADS  Google Scholar 

  10. S. F. Dermott, S. Jayaraman, Y. L. Xu, B. A. S. Gustafson, and J. C. Liou, Nature 369, 719 (1994).

    Article  ADS  Google Scholar 

  11. L. R. Doyle, J. A. Carter, D. C. Fabrycky, R.W. Slawson, S. B. Howell, J. N. Winn, J. A. Orosz, A. Prša, W. F. Welsh, et al., Science 333, 1602 (2011).

    Article  ADS  Google Scholar 

  12. R. Dvorak, Astron. Astrophys. 167, 379 (1986).

    ADS  Google Scholar 

  13. M. ElMoutamid, B. Sicardy, and S. Renner, Cel. Mech. Dyn. Astron. 118, 235 (2014).

    Article  ADS  Google Scholar 

  14. D. Fedele, M. Carney, M. R. Hogerheijde, C. Walsh, A. Miotello, P. Klaassen, S. Bruderer, Th. Henning, et al., Astron. Astrophys. 600, A72 (2017).

    Article  ADS  Google Scholar 

  15. J. S. Greaves, W. S. Holland, G. Moriarty-Schieven, T. Jenness, W. R. F. Dent, B. Zuckerman, C. M©Carthy, R. A. Webb, et al., Astrophys. J. 506, L133 (1998).

    Article  ADS  Google Scholar 

  16. M. Hasegawa, K. Ohtsuki, K. Nakazawa, and Y. Nakagawa, Prog. Theor. Phys. Suppl. 96, 175 (1988).

    Article  ADS  Google Scholar 

  17. M. J. Holman and P. A. Wiegert, Astrophys. J. 117, 621 (1999).

    ADS  Google Scholar 

  18. A. A. Jackson and H. A. Zook, Nature 337, 629 (1989).

    Article  ADS  Google Scholar 

  19. J. E. Krist, K. R. Stapelfeldt, G. Bryden, and P. Plavchan, Astron. J. 144, 45 (2012).

    Article  ADS  Google Scholar 

  20. S. Lines, Z. M. Leinhardt, S. Paardekooper, C. Baruteau, and P. Thébault, Astrophys. J. 782, L11 (2014).

    Article  ADS  Google Scholar 

  21. S. Lines, Z. M. Leinhardt, C. Baruteau, S. Paardekooper, and P. J. Carter, Astron. Astrophys. 582, A5 (2015).

    Article  ADS  Google Scholar 

  22. S. Lines, Z. M. Leinhardt, C. Baruteau, S. Paardekooper, and P. J. Carter, Astron. Astrophys. 590, A62 (2016).

    Article  ADS  Google Scholar 

  23. M. A. MacGregor, D. J. Wilner, K. A. Rosenfeld, S. M. Andrews, B. Matthews, A. M. Hughes, M. Booth, E. Chiang, et al., Astrophys. J. 762, L21 (2013).

    Article  ADS  Google Scholar 

  24. F. Marzari, P. Thébault, H. Scholl, G. Picogna, and C. Baruteau, Astron. Astrophys. 553, A71 (2013).

    Article  ADS  Google Scholar 

  25. S. Meschiari, Astrophys. J. 752, 71 (2012a).

    Article  ADS  Google Scholar 

  26. S. Meschiari, Astrophys. J. 761, L7 (2012b).

    Article  ADS  Google Scholar 

  27. K. Moriwaki and Y. Nakagawa, Astrophys. J. 609, 1065 (2004).

    Article  ADS  Google Scholar 

  28. M. Mugrauer, R. Neuhäuser, and T. Mazeh, Astron. Astrophys. 469, 755 (2007).

    Article  ADS  Google Scholar 

  29. C. D. Murray and S. F. Dermott, Solar System Dynamics (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  30. M. M. Mutter, A. Pierens, and R. P. Nelson, Mon. Not. R. Astron. Soc. 465, 4735 (2017a).

    Article  ADS  Google Scholar 

  31. M. M. Mutter, A. Pierens, and R. P. Nelson, Mon. Not. R. Astron. Soc. 469, 4504 (2017b).

    Article  ADS  Google Scholar 

  32. D. Nesvorny and L. Dones, Icarus 160, 271 (2002).

    Article  ADS  Google Scholar 

  33. J. A. Orosz, W. F. Welsh, J. A. Carter, D. C. Fabrycky, W. D. Cochran, M. Endl, E. B. Ford, N. Haghighipour, et al., Science 337, 1511 (2012).

    Article  ADS  Google Scholar 

  34. L. M. Ozernoy, N. N. Gorkavyi, J. C. Mather, and T. A. Taidakova, Astrophys. J. 537, L147 (2000).

    Article  ADS  Google Scholar 

  35. S.-J. Paardekooper, Z.M. Leinhardt, P. Thébault, and C. Baruteau, Astrophys. J. 754, L16 (2012).

    Article  ADS  Google Scholar 

  36. T. D. Pearce and M. C. Wyatt, Mon. Not. R. Astron. Soc. 443, 2541 (2014).

    Article  ADS  Google Scholar 

  37. A. Pierens and R. P. Nelson, Astron. Astrophys. 472, 993 (2007).

    Article  ADS  Google Scholar 

  38. A. Pierens and R. P. Nelson, Astron. Astrophys. 483, 633 (2008).

    Article  ADS  Google Scholar 

  39. E. A. Popova and I. I. Shevchenko, Astrophys. J. 769, 152 (2013).

    Article  ADS  Google Scholar 

  40. E. A. Popova and I. I. Shevchenko, Astron. Lett. 42, 474 (2016).

    Article  ADS  Google Scholar 

  41. W. T. Reach, B. A. Franz, J. L. Weiland, M. G. Hauser, T.N. Kelsall, E. L. Wright, G. Rawleyt, S.W. Stemwedel, et al., Nature 374, 521 (1995).

    Article  ADS  Google Scholar 

  42. L. Rodet, H. Beust, M. Bonnefoy, A.-M. Lagrange, P. A. B. Galli, C. Ducourant, and R. Teixeira, Astron. Astrophys. 602, A12 (2017).

    Article  Google Scholar 

  43. S. S. Sheppard and C. A. Trujillo, Science 313, 511 (2006).

    Article  ADS  Google Scholar 

  44. I. I. Shevchenko, Astrophys. J. 799, 8 (2015).

    Article  ADS  Google Scholar 

  45. C. Thalmann, M. Janson, E. Buenzli, T. D. Brandt, and J. P. Wisniewski, Astrophys. J. 743, L6 (2011).

    Article  ADS  Google Scholar 

  46. A. Toomre, Astrophys. J. 139, 1217 (1964).

    Article  ADS  Google Scholar 

  47. M. Valtonen, A. Mylläri, V. Orlov, and A. Rubinov, Dynamical Evolution of Dense Stellar Systems, Proceedings of the IAU Symposium No. 246, Ed. by E. Vesperini, M. Giersz, and A. Sills (Cambridge Univ. Press, Cambridge, 2008), p. 209.

  48. L. Verlet, Phys. Rev. 159, 98 (1967).

    Article  ADS  Google Scholar 

  49. W. F. Welsh, J. A. Orosz, J. A. Carter, D. C. Fabrycky, E. B. Ford, J. J. Lissauer, A. Prša, S. N. Quinn, et al., Nature 481, 475 (2012).

    Article  ADS  Google Scholar 

  50. M. C. Wyatt and W. R. F. Dent, Mon. Not. R. Astron. Soc. 334, 589 (2002).

    Article  ADS  Google Scholar 

  51. J.-L. Zhou, J.-W. Xie, H.-G. Liu, H. Zhang, and Y.-S. Sun, Res. Astron. Astrophys. 12, 1081 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Demidova.

Additional information

Original Russian Text © T.V. Demidova, I.I. Shevchenko, 2018, published in Pis’ma v Astronomicheskii Zhurnal, 2018, Vol. 44, No. 2, pp. 140–147.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demidova, T.V., Shevchenko, I.I. Simulations of the Dynamics of the Debris Disks in the Systems Kepler-16, Kepler-34, and Kepler-35. Astron. Lett. 44, 119–125 (2018). https://doi.org/10.1134/S1063773718010012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773718010012

Keywords

Navigation