Skip to main content
Log in

Structure and physical conditions in the Hα loops of an M7.7 solar flare

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The M7.7 solar flare on July 19, 2012, is the most dramatic example of a “Masuda” flare with a well-defined second X-ray above-the-loop-top source. The behavior of the system of loops accompanying this flare has been studied comprehensively by Liu et al. based on Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) data. We have performed spectroscopic and filter observations of the Hα loops in this flare with the Large Solar Vacuum Telescope. The basic physical parameters in the loops of this peculiar flare generally coincide with the known data in Hα loops. However, the electron density, 1011 cm−3, and the integrated disk-center continuum intensity, 12%, are quite high, given that the observations were obtained almost 3 h after the flare onset.We have estimated the ascending velocity of the loop arcade (~3.5 km s−1) and the height difference between the Hα and 94 Å loops (~2 × 104 km).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. Allen, Astrophysical Quantities (Athlone Press, London, 1973; Mir,Moscow, 1977, p. 446).

    Google Scholar 

  2. A. Caspi, S. Krucker, and R. P. Lin,Astrophys. J. 781, 43 (2014).

    Article  ADS  Google Scholar 

  3. Q. Chen and V. Petrosian, Astrophys. J. 748, 33 (2012).

    Article  ADS  Google Scholar 

  4. N. M. Firstova, V. I. Polyakov, and A. V. Firstova, Solar Phys. 249, 53 (2008).

    Article  ADS  Google Scholar 

  5. N. M. Firstova, V. I. Polyakov, and A. V. Firstova, Astron Lett. 40, 449 (2014).

    Article  ADS  Google Scholar 

  6. P. A. Gritsyk and B. V. Somov, Astron. Lett. 42, 531 (2016).

    Article  ADS  Google Scholar 

  7. P. Heinzel, in Proceedings of the 3rd SOHO Workshop (ESA SP-373), p. 133 (1994).

    Google Scholar 

  8. P. Heinzel and M. Karlicky, Solar Phys. 110, 343 (1987).

    ADS  Google Scholar 

  9. P. Heinzel, B. Schmieder, and P. Mein, Solar Phys. 139, 81 (1992).

    Article  ADS  Google Scholar 

  10. P. Heinzel, P. Gouttenbrose, and J. C. Vial, Astron. Astrophys. 292, 656 (1994).

    ADS  Google Scholar 

  11. S. Ishikawa, S. Krucker, T. Takahashi, and R. P. Lin, Astrophys. J. 737, 48 (2011).

    Article  ADS  Google Scholar 

  12. S. Kamio, H. Kurokawa, and T. T. Jshii, Solar Phys. 215, 127 (2003).

    Article  ADS  Google Scholar 

  13. P. Kotrc, P. Heinzel, A. V. Gorshkov, E. V. Konononvich, Yu. A. Kupryakov, and O. B. Smirnova, in Proceedings of the IAU Colloq. No. 144 on Solar Coronal Structures, p. 361 (1994).

    Google Scholar 

  14. P. Kotrc, M. Barta, P. Schwarz, Y. A. Kupryakov, L. K. Kashapova, and M. Karlicky, Solar Phys. 284, 447 (2013).

    Article  ADS  Google Scholar 

  15. S. Krucker and M. Battaglia, Astrophys. J. 780, 107 (2014).

    Article  ADS  Google Scholar 

  16. H. Li, J. You, Q. Du, and X. Yu, Solar Phys. 225, 75 (2005).

    Article  ADS  Google Scholar 

  17. W. Liu, Q. Chen, and V. Petrosian, Astrophys. J. 767, 168 (2013).

    Article  ADS  Google Scholar 

  18. S. Masuda, T. Kosugi, H. Hara, S. Tsuneta, and Y. Ogawara, Nature 371, 495 (1994).

    Article  ADS  Google Scholar 

  19. P. Mein and N. Mein, Astron. Astrophys. 203, 162 (1988).

    ADS  Google Scholar 

  20. J. Milic, S. Dejanic, and P. Kotrc, Publ. Astron. Observ. Belgrade 86, 283 (2009).

    ADS  Google Scholar 

  21. V. Petrosian, T. Q. Donagny, and J. M. McTiernan, Astrophys. J. 569, 459 (2002).

    Article  ADS  Google Scholar 

  22. F. Reale, Living Rev. Solar Phys. 11, 4 (2014).

    Article  ADS  Google Scholar 

  23. B. Schmieder, P. Heinzel, J. E. Wilk, J. Lemen, B. Anwar, P. Kotrch, and E. Hiei, Solar Phys. 156, 337 (1995).

    Article  ADS  Google Scholar 

  24. V. I. Skomorovsky and N. M. Firstova, Solar Phys. 163, 209 (1996).

    Article  ADS  Google Scholar 

  25. H. J. Smith and E. Smith, Solar Flares (Macmillan, New York, 1963), p. 424.

    Google Scholar 

  26. Z. Svestka, Solar Phys. 121, 399 (1989).

    Article  ADS  Google Scholar 

  27. Z. Svestka, J. M. Fontenla, M. E. Machado, S. F. Martin, D. F. Neadig, and G. Poletto, Solar Phys. 108, 237 (1987).

    Article  ADS  Google Scholar 

  28. M. Tomchak, Astron. Astrophys. 366, 294 (2001).

    Article  ADS  Google Scholar 

  29. M. Tomchak, Astron. Astrophys. 502, 665 (2009).

    Article  ADS  Google Scholar 

  30. J. You, E. Hiei, and H. Li, Solar Phys. 217, 235 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. M. Firstova or V. I. Polyakov.

Additional information

Original Russian Text © N.M. Firstova, V.I. Polyakov, 2017, published in Pis’ma v Astronomicheskii Zhurnal, 2017, Vol. 43, No. 11, pp. 845–856.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Firstova, N.M., Polyakov, V.I. Structure and physical conditions in the Hα loops of an M7.7 solar flare. Astron. Lett. 43, 768–779 (2017). https://doi.org/10.1134/S1063773717110032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773717110032

Keywords

Navigation