Astronomy Letters

, Volume 43, Issue 10, pp 697–702 | Cite as

Meridional component of the large-scale magnetic field at minimum and characteristics of the subsequent solar activity cycle



The polar magnetic field near the cycle minimum is known to correlate with the height of the next sunspot maximum. There is reason to believe that the hemispheric coupling can play an important role in forming the next cycle. The meridional component of the large-scale magnetic field can be one of the hemispheric coupling indices. For our analysis we have used the reconstructed data on the large-scale magnetic field over 1915–1986. We show that in several cycles not only the height but also the general course of the cycle can be described in this way about 6 years in advance. This coupling has been confirmed by the currently available data from 1976 to 2016, but the ratio of the meridional field to the total absolute value of the field vector has turned out to be a more promising parameter. In this paper it was calculated at a height of ∼70 Mm above the photosphere. The date of the forthcoming minimum is estimated using this parameter to be mid-2018; using the global field as a forecast parameter gives a later date of the minimum, early 2020.


large-scale solar magnetic field solar cyclicity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.W. Babcock, Astrophys. J. 133, 572 (1961).ADSCrossRefGoogle Scholar
  2. 2.
    A. Brandenburg, I. Rogachevskii, and N. Kleeorin, New J. Phys. 18, 125011 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    Z. L. Du, Astrophys. J. 804, 15 (2015).ADSCrossRefGoogle Scholar
  4. 4.
    K. Georgieva, ISRN Astron. Astrophys. 2011, 437838 (2011). doi 10.5402/2011/437838CrossRefGoogle Scholar
  5. 5.
    A. V. Getling, R. Ishikawa, and A. A. Buchnev, Adv. Space Res. 55, 862 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    A. V. Getling, R. Ishikawa, and A. A. Buchnev, Solar Phys. 291, 371 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    K. L. Harvey, Bull. Am. Astron. Sci. 28, 867 (1996).ADSGoogle Scholar
  8. 8.
    D. H. Hathaway and L. A. Upton, J. Geophys. Res. Space Phys. 121, 10.744 (2016).CrossRefGoogle Scholar
  9. 9.
    J. T. Hoeksema, Solar Magnetic Field—1985 through 1990 (WCDA, Boulder, USA, 1991).Google Scholar
  10. 10.
    J. T. Hoeksema and P. H. Scherrer, Solar Magnetic Field—1976 through 1985 (WCDA, Boulder, USA, 1986).Google Scholar
  11. 11.
    F. Krause and K. H. Radler, Mean Field Magnetohydrodynamics and Dynamo Theory (Akademie, Berlin, 1980).MATHGoogle Scholar
  12. 12.
    R. B. Leighton, Astrophys. J. 156, 1 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    V. I. Makarov, A. G. Tlatov, D. K. Callebaut, and V. N. Obridko, Solar Phys. 206, 383 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    S. M. Mansurov, G. S. Mansurov, and L. G. Mansurova, Antarktika, No. 15, 16 (1976).Google Scholar
  15. 15.
    A. Muñoz-Jaramillo, M. Dasi-Espuig, L. A. Balmaceda, and E. E. DeLuca, Astrophys. J. Lett. 767, 7 (2013).CrossRefGoogle Scholar
  16. 16.
    A. A. Norton, P. Charbonneau, and D. Passos, Space Sci. Rev. 186, 251 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    V. N. Obridko and B. D. Shelting, Solar Phys. 184, 187 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    V. N. Obridko and B. D. Shelting, Solar Phys. 201, 1 (2001a).ADSCrossRefGoogle Scholar
  19. 19.
    V. N. Obridko and B. D. Shelting, Astron. Rep. 45, 1012 (2001b).ADSCrossRefGoogle Scholar
  20. 20.
    V. N. Obridko and B. D. Shelting, Solar Phys. 248, 191 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    V. N. Obridko and B. D. Shelting, Astron. Lett. 42, 631 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    V. N. Obridko, A. F. Kharshiladze, and B. D. Shelting, Astron. Astrophys. Trans. 11, 65 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    V. N. Obridko, Yu. A. Nagovitsyn, and K. Georgieva, Astrophys. Space Sci. Proc. 30, 1 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    E. H. Parker, Astrophys. J. 122, 293 (1955).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    V. V. Pipin, Mon. Not. R. Astron. Soc. 451, 1528 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    V. V. Pipin and A. G. Kosovichev, Astrophys. J. 785, 12 (2014).CrossRefGoogle Scholar
  27. 27.
    V. V. Pipin and A. G. Kosovichev, in Generation and Properties of Large-Scale Non-Axisymmetric Magnetic Fields by Solar Dynamo, Proceedings of the 29th IAU General Assembly, 2015, p. 2258424.Google Scholar
  28. 28.
    D. Sokoloff, M. Fioc, and E. Nesme-Ribes, Magnetohydrodynamics 31, 18 (1996).Google Scholar
  29. 29.
    L. Svalgaard, Dan. Meteorol. Inst. Geophys. Paper No. R-29 (1972).Google Scholar
  30. 30.
    L. Svalgaard, Stanford Univ. Inst. Plasma Res. Rep. No. 648 (1976).Google Scholar
  31. 31.
    J. Sykora, O. G. Badalyan, and V. N. Obridko, Adv. Space Res. 29, 395 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    L. Upton and D. H. Hathaway, Astrophys. J. 780, 5 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    Y.-M. Wang, and N. R. Sheeley, Astrophys. J. Lett. 694, I L11 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    R. K. Yadav, T. Gastine, U. R. Christensen, and A. Reiners, Astron. Astrophys. 573, 14 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2017

Authors and Affiliations

  1. 1.Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave PropagationRussian Academy of SciencesTroitsk, Moscow oblastRussia

Personalised recommendations