Skip to main content
Log in

The possibility of investigating ultra-high-energy cosmic-ray sources using data on the extragalactic diffuse gamma-ray emission

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We provide our estimates of the intensity of the gamma-ray emission with an energy near 0.1 TeV generated in intergalactic space in the interactions of cosmic rays with background emissions. We assume that the cosmic-ray sources are pointlike and that these are active galactic nuclei. The following possible types of sources are considered: remote and powerful ones, at redshifts up to z = 1.1, with a monoenergetic particle spectrum, E = 1021 eV; the same objects, but with a power-law particle spectrum; and nearby sources at redshifts 0 < z ≤ 0.0092, i.e., at distances no larger than 50 Mpc also with a power-law particle spectrum. The contribution of cosmic rays to the extragalactic diffuse gammaray background at an energy of 0.1 TeVhas been found to depend on the type of sources or, more specifically, the contribution ranges from f ≪ 10−4 to f ≈ 0.1, depending on the source model. We conclude that the data on the extragalactic background gamma-ray emission can be used to determine the characteristics of extragalactic cosmic-ray sources, i.e., their distances and the pattern of the particle energy spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abu-Zayyad, M. Allen, R. Anderson, R. Azuma, E. Barcikowski, J. W. Belz, D. R. Bergman, et al., in Proceedings of the 33rd International Cosmic Ray Conference ICRC, Rio de Janeiro, Brazil, July 2–9, 2013.

    Google Scholar 

  2. M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, et al., Astrophys. J. 799, 86A (2015).

  3. V. S. Berezinsky, Phys. At. Nucl. 11, 399 (1970).

    Google Scholar 

  4. V.S. Berezinsky, S.V. Bulanov, V. L. Ginzburg, et al., Astrophysics of Cosmic Rays,Ed. byV. L. Ginzburg (Nauka, Moscow, 1990; North-Holland, Amsterdam, 1990).

    Google Scholar 

  5. P. Bhattacharjee and G. Sigl, Phys. Rep. 327, 109 (2000).

    Article  ADS  Google Scholar 

  6. G. W. Clark, G. Garmire, and W. L. Kraushaar, Astrophys. J. Lett. 153, L203 (1968).

    Article  ADS  Google Scholar 

  7. T. A. Clark, L.W. Brown, and J. K. Alexander, Nature 228, 847 (1970).

    Article  ADS  Google Scholar 

  8. E. Dwek and F. Krennrich, Astropart. Phys. 43, 112 (2013).

    Article  ADS  Google Scholar 

  9. C. E. Fichtel, R. C. Hartman, D. A. Kniffen, D. J. Thompson, H. Ogelman, M. E. Ozel, T. Tumer, and G. F. Bignami, Astrophys. J. 198, 163 (1975).

    Article  ADS  Google Scholar 

  10. E. Gavish and D. Eichler, Astrophys. J. 822, 56 (2016).

    Article  ADS  Google Scholar 

  11. V. L. Ginzburg, Theoretical Physics and Astrophysics (Nauka, Moscow, 1975; Pergamon, Oxford, 1979).

    Google Scholar 

  12. D. S. Gorbunov, P. S. Tinaykov, I. I. Tkachev, and S. V. Troitsky, Astrophys. J. 577, L93 (2002).

  13. K. Greisen, Phys. Rev. Lett. 16, 748 (1966).

    Article  ADS  Google Scholar 

  14. S. Hayakawa, Prog. Theor. Phys. 37, 594 (1966).

    Article  Google Scholar 

  15. O. K. Kalashev, Cand. Sci. (Phys.Math.) Dissertation (Inst. Nucl. Res. RAS,Moscow, 2003).

    Google Scholar 

  16. N. S. Kardashev, Mon. Not. R. Astron. Soc. 522, 205 (1995).

    Google Scholar 

  17. M. V. Medvedev, Phys. Rev. E 67, 045401 (2003).

    Article  ADS  Google Scholar 

  18. Particle Data Group, Phys. Rev. D 69, 269 (2004).

  19. O. Prilutsky and I. L. Rozental, Acta Phys. Hung. 29 (Suppl. 1), 51 (1970).

    Google Scholar 

  20. R. J. Protheroe and P. L. Biermann, Astropart. Phys. 6, 45 (1996).

    Article  ADS  Google Scholar 

  21. R. J. Protheroe and P. L. Biermann, Astropart. Phys. 7, 181E (1997).

  22. F.W. Stecker, Phys. Rev. Lett. 21, 1016 (1968).

    Article  ADS  Google Scholar 

  23. N. Topchiev, A. Galper, V. Bonvicini, et al., J. Phys.: Conf. Ser. 675, 032009 (2016).

    Google Scholar 

  24. A. V. Uryson, JETP Lett. 64, 71 (1996).

    Article  ADS  Google Scholar 

  25. A. V. Uryson, Astron. Rep. 45, 591 (2001).

    Article  ADS  Google Scholar 

  26. A. V. Uryson, Astron. Lett. 30, 816 (2004).

    Article  ADS  Google Scholar 

  27. A. V. Uryson, Phys. Part. Nucl. 37, 347 (2006)].

    Article  Google Scholar 

  28. M. P. Veron-Cetty and P. Veron, Astron. Astrophys. 412, 399 (2003).

    Article  ADS  Google Scholar 

  29. G. T. Zatsepin and V. A. Kuzmin, JETP Lett. 4, 78 (1966).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Uryson.

Additional information

Original Russian Text © A.V. Uryson, 2017, published in Pis’ma v Astronomicheskii Zhurnal, 2017, Vol. 43, No. 8, pp. 584–590.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uryson, A.V. The possibility of investigating ultra-high-energy cosmic-ray sources using data on the extragalactic diffuse gamma-ray emission. Astron. Lett. 43, 529–535 (2017). https://doi.org/10.1134/S1063773717080072

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773717080072

Keywords

Navigation