Skip to main content
Log in

HI content in galactic disks: The role of gravitational instability

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We examine the dependence of the total hydrogen mass M HI in late-type star-forming galaxies on rotation velocity V rot and optical size D 25 or radial scale length R 0 of the disk for two samples of galaxies: (i) isolated galaxies (AMIGA) and (ii) galaxies with edge-on disks (flat galaxies according to Karachentsev et al.). M HI given in the HYPERLEDA database for flat galaxies have turned out to be, on average, overestimated by ~0.2 dex compared to isolated galaxies with similar V rot or D 25, which is apparently due to an overestimation of the self-absorption in the HI line. The hydrogen mass in the galaxies of both samples closely correlates with the total specific angular momentum of the galactic disk J, which is proportional to V rot D 25 or V rot R 0, with the low-surface-brightness galaxies lying along the common V rot R 0 sequence. We discuss the possibility of explaining the relationship between M HI and V rot D 25 by assuming that the gas mass in the disk is regulated by the marginal gravitational stability condition for the gas layer. Comparison of the observed and theoretically expected dependences leads us to conclude that either the gravitational stability corresponds to higher values of the Toomre parameter than is usually assumed, or the threshold stability condition formost galaxies was fulfilled only in the past, when the gasmass in the disks was a factor of 2–4 higher than that at present (except for the galaxies with an anomalously high observed HI content). The latter condition requires that for most galaxies the conversion of gas into stars be not compensated by the external accretion of gas onto the disk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.V Abramova and A. V. Zasov, Astron.Rep. 55, 202 (2011).

    Article  ADS  Google Scholar 

  2. A. Begum, J. N. Chengalur, I. D. Karachentsev, and M. E. Sharina, Mon. Not. R. Astron. Soc. 386, 138 (2008).

    Article  ADS  Google Scholar 

  3. F. Bigiel and L. Blitz, Astrophys. J. 756, 183 (2012).

    Article  ADS  Google Scholar 

  4. F. Bigiel, A. Leroy, F. Walter, L. Blitz, E. Brinks, W. J. C. de Blok, and B. Madore, Astron. J. 140, 1194 (2010).

    Article  ADS  Google Scholar 

  5. W. J. G. de Blok, F. Walter, E. Brinks, C. Trachternach, S.-H. Oh, and R. C. Kennicutt, Astrophys. J. 136, 2648 (2008).

    Google Scholar 

  6. S. Boissier, A. Gil de Paz, A. Boselli, B. F. Madore, V. Buat, L. Cortese, D. Burgarella, J. C. Munoz-Mateos, et al., Astrophys. J. Suppl. Ser. 173, 524 (2007).

    Article  ADS  Google Scholar 

  7. M. S. Bothwell, J. Wagg, C. Cicone, R. Maiolino, P. Moller, M. Aravena, C. De Breuck, Y. Peng, et al., Mon. Not. R. Astron. Soc. 445, 2599 (2014).

    Article  ADS  Google Scholar 

  8. J. D. Bradford, M. C. Geha, and M. R. Blanton, Astrophys. J. 809, 146 (2015).

    Article  ADS  Google Scholar 

  9. G. B. Brammer, K. E. Whitaker, P. G. van Dokkum, D. Marchesini, I. Labbe, M. Franx, M. Kriek, R. F. Quadri, et al., Astrophys. J. Lett. 706, L173 (2009).

    Google Scholar 

  10. K. Bundy, C. Scarlata, C. M. Carollo, R. S. Ellis, N. Drory, Ph. Hopkins, M. Salvato, A. Leauthaud, et al., Astrophys. J. 719, 1969 (2010).

    Article  ADS  Google Scholar 

  11. H. M. Courtois, R. B. Tully, J. R. Fisher, N. Bonhomme, M. Zavodny, and A. Barnes, Astrophys. J. 138, 1938 (2009).

    ADS  Google Scholar 

  12. B. G. Elmegreen, Astrophys. J. 737, 10 (2011).

    Article  ADS  Google Scholar 

  13. B.G. Elmegreen and D. A. Hunter, Astrophys. J. 805, 145 (2015).

    Article  ADS  Google Scholar 

  14. C. Evoli, P. Salucci, A. Lapi, and L. Danese, Astrophys. J. 743, 45 (2011).

    Article  ADS  Google Scholar 

  15. R. de Grijs and R. F. Peletier, Astron. Astrophys. 320, L21 (1997).

    Google Scholar 

  16. M. Hall, S. Courteau, A. A. Dutton, M. McDonald, and Y. Zhu, Mon. Not. R. Astron. Soc. 425, 2741 (2012).

    Article  ADS  Google Scholar 

  17. J. Heidmann, N. Heidmann, and G. de Vaucouleurs, Mon. Not. R. Astron. Soc. 75, 85 (1972).

    ADS  Google Scholar 

  18. S. Huang, M. P. Haynes, R. Giovanelli, and J. Brinchmann, Astrophys. J. 756, 113 (2012).

    Article  ADS  Google Scholar 

  19. Sh. Huang, M. P. Haynes, R. Giovanelli, G. Hallenbeck, M. G. Jones, E. A. K. Adams, J. Brinchmann, J. N. Chengalur, et al., Astrophys. J. 793, 40 (2014).

    Article  ADS  Google Scholar 

  20. R. Ianjamasimanana, W. J. G. de Blok, F. Walter, G. H. Heald, A. Caldu-Primo, Th. H. Jarrett, et al., Astron. J. 150, 47 (2015).

    Article  ADS  Google Scholar 

  21. I. D. Karachentsev, V. E. Karachentseva, Yu. N. Kudrya, M. E. Sharina, and S. L. Parnovskij, Bull. Spec. Astrophys. Observ. 47, 185 (1999).

    Google Scholar 

  22. I. D. Karachentsev, V. E. Karachentseva, W. K. Huchtmeier, and D. I. Makarov, Astrophys. J. 127, 2031 (2004).

    ADS  Google Scholar 

  23. I. D. Karachentsev, D. I. Makarov, and E. I. Kaisina, Astron. J. 145, 22 (2013).

    Article  ADS  Google Scholar 

  24. V. E. Karachentseva, V. S. Lebedev, and A. L. Shcherbanovskij, Bull. Inf. CDS 30, 125 (1986).

    ADS  Google Scholar 

  25. R. C. Kennicutt, Astrophys. J. 344, 685 (1989).

    Article  ADS  Google Scholar 

  26. A. V. Khoperskov, A. V. Zasov, and N. V. Tyurina, Astron. Rep. 47, 357 (2003).

    Article  ADS  Google Scholar 

  27. W.-T. Kim and E. C. Ostriker, Astrophys. J. 559, 70 (2001).

    Article  ADS  Google Scholar 

  28. W.-T. Kim and E.C. Ostriker, Astrophys. J. 660, 1232 (2007).

    Article  ADS  Google Scholar 

  29. F. Lelli, S. S. McGaugh, and J. M. Schombert, Astron. J. 152, 157 (2016).

    Article  ADS  Google Scholar 

  30. A. K. Leroy, F. Walter, E. Brinks, F. Bigiel, W. J. G. de Blok, B. Madore, and M. D. Thornley, Astrophys. J. 136, 2782 (2008).

    ADS  Google Scholar 

  31. U. Lisenfeld, L. Verdes-Montenegro, J. Sulentic, S. Leon, D. Espada, G. Bergond, E. Garcia, J. Sabater, et al., Astron. Astrophys. 462, 507 (2007).

    Article  ADS  Google Scholar 

  32. U. Lisenfeld, D. Espada, L. Verdes-Montenegro, N. Kuno, S. Leon, J. Sabater, N. Sato, J. Sulentic, et al., Astron. Astrophys. 534, 25 (2011).

    Article  Google Scholar 

  33. D. Makarov, Ph. Prugniel, N. Terekhova, H. Courtois, and I. Vauglin, Astron. Astrophys. 570, A13 (2014).

    Article  Google Scholar 

  34. C. Martin and R. Kennicutt, Astrophys. J. 555, 301 (2001).

    Article  ADS  Google Scholar 

  35. Th. P. K. Martinsson, M.A.W. Verheijen, M.A. Bershady, K. B. Westfall, D. R. Andersen, and R. A. Swaters, Astron. Astrophys. 585, A99 (2016).

    Article  ADS  Google Scholar 

  36. G. R. Meurer, Zh. Zheng, and W. J.G.de Blok, Mon. Not. R. Astron. Soc. 429, 2537 (2013).

    Article  ADS  Google Scholar 

  37. M. Neeleman, J. X. Prochaska, J. Ribaudo, N. Lehner, J. Ch. Howk, M. Rafelski, and N. Kanekar, Astrophys. J. 818, 113 (2016).

    Article  ADS  Google Scholar 

  38. D. Obreschkow, K. Glazebrook, V. Kilborn, and K. Lutz, Astrophys. J. 824, L26 (2016).

    Article  ADS  Google Scholar 

  39. V. L. Polyachenko, E. V. Polyachenko, and A. V. Strel’nikov, Astron. Lett. 23, 483 (1997).

    ADS  Google Scholar 

  40. W. J. Quirk, Astrophys. J. 176, L9 (1972).

    Article  ADS  Google Scholar 

  41. A. B. Romeo and J. Wiegert, Mon. Not. R. Astron. Soc. 416, 1191 (2011).

    Article  ADS  Google Scholar 

  42. A. B. Romeo and N. Falstad, Mon. Not. R. Astron. Soc. 433, 1389 (2013).

    Article  ADS  Google Scholar 

  43. D. G. Russel, Astrophys. J. 565, 681 (2002).

    Article  ADS  Google Scholar 

  44. S. Sachdeva and K. Saha, Astrophys. J. Lett. 820, 4 (2016).

    Article  ADS  Google Scholar 

  45. E. S. Safonova, Astron. Rep. 55, 1016 (2011).

    Article  ADS  Google Scholar 

  46. A. Schechtman-Rook and K. M. Hess, Astrophys. J. 750, 171 (2012).

    Article  ADS  Google Scholar 

  47. D. Schiminovich, B. Catinella, G. Kauffmann, S. Fabello, J. Wang, C. Hummels, J. Lemonias, S. M. Moran, et al., Mon. Not. R. Astron. Soc. 408, 919 (2010).

    Article  ADS  Google Scholar 

  48. J. M. Solanes, R. Giovanelli, and M. P. Haynes, Astrophys. J. 461, 609 (1996).

    Article  ADS  Google Scholar 

  49. G. S. Stinson, A. A. Dutton, L. Wang, A. V. Maccio, J. Herpich, J. D. Bradford, T. R. Quinn, J. Wadsley, et al., Mon. Not. R. Astron. Soc. 454, 1105 (2015).

    Article  ADS  Google Scholar 

  50. R. A. Swaters, T. S.van Albada, J. M. van der Hulst, and R. Sancisi, Astron. Astrophys. 390, 829 (2002).

    Article  ADS  Google Scholar 

  51. M. C. Toribio, J. M. Solanes, R. Giovanelli, M. P. Haynes, and A. M. Martin, Astrophys. J. 732, 93 (2011).

    Article  ADS  Google Scholar 

  52. B. Vulcani, B. M. Poggianti, J. Fritz, G. Fasano, A. Moretti, R. Calvi, and A. Paccagnella, Astrophys. J. 798, 14 (2015).

    Google Scholar 

  53. F. Walter, E. Brinks, W. J. G. de Blok, F. Bigiel, R. C. Kennicutt, M. D. Thornley, and A. Leroy, Astrophys. J. 136, 2563 (2008).

    Google Scholar 

  54. J.Wang, B. S. Koribalski, P. Serra, Th. van der Hulst, S. Roychowdhury, P. Kamphuis, and J. N. Chengalur, Mon. Not. R. Astron. Soc. 460, 2143 (2016).

    Article  ADS  Google Scholar 

  55. K. B. Westfall, D. R. Andersen, M. A. Bershady, Th. P. K. Martinsson, R. A. Swaters, and M.A.W. Verheijen, Astrophys. J. 785, 43 (2014).

    Article  ADS  Google Scholar 

  56. O. I. Wong, J. R. Meurer, Z. Zheng, T. M. Heckman, D. A. Thilker, and M. A. Zwaan, Mon.Not. R. Astron. Soc. 460, 1106 (2016).

    Article  ADS  Google Scholar 

  57. K. Yim, T. Wong, J. Ch. Howk, and J.M. van der Hulst, Astrophys. J. 141, 48 (2011).

    ADS  Google Scholar 

  58. K. Yim, T. Wong, R. Xue, R. J. Rand, E.Rosolowsky, J. M. van der Hulst, R. Benjamin, and E. J. Murphy, Astrophys. J. 148, 127 (2014).

    Google Scholar 

  59. A. V. Zasov and S. G. Simakov, Astrofizika 29, 190 (1988).

    ADS  Google Scholar 

  60. A. V. Zasov and T. V. Rubtsova, Astron. Lett. 15, 51 (1989).

    Google Scholar 

  61. A. V. Zasov J. W. Sulentic, Astrophys. J. 430, 179 (1994).

    Article  ADS  Google Scholar 

  62. A. V. Zasov and A. A. Smirnova, Astron. Lett. 31, 160 (2005).

    Article  ADS  Google Scholar 

  63. A. V. Zasov and N. A. Terekhova, Astron. Lett. 39, 291 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zasov.

Additional information

Original Russian Text © A.V. Zasov, N.A. Zaitseva, 2017, published in Pis’ma v Astronomicheskii Zhurnal, 2017, Vol. 43, No. 7, pp. 485–499.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zasov, A.V., Zaitseva, N.A. HI content in galactic disks: The role of gravitational instability. Astron. Lett. 43, 439–451 (2017). https://doi.org/10.1134/S1063773717070052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773717070052

Keywords

Navigation