Skip to main content
Log in

The speckle polarimeter of the 2.5-m telescope: Design and calibration

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The speckle polarimeter is a facility instrument of the 2.5-mSAIMSU telescope that combines the features of a speckle interferometer and a polarimeter. The speckle polarimeter is designed for observations in several visible bands in the following modes: speckle interferometry, polarimetry, speckle polarimetry, and polaroastrometry. In this paper we describe the instrument design and the procedures for determining the angular scale of the camera and the position angle of the camera and the polarimeter. Our measurements of the parameters for the binary star HD 9165 are used as an example to demonstrate the technique of speckle interferometry. For bright objects the accuracy of astrometry is limited by the error of the correction for the distortion caused by the atmospheric dispersion compensator. At zenith distances less than 45◦ the additional relative measurement error of the separation is 0.7%, while the additional error of the position angle is 0.3°. In the absence of a dispersion compensator the accuracy of astrometry is limited by the uncertainty in the scale and position angle of the camera, which are 0.15% and 0.06°, respectively. We have performed polarimetric measurements of unpolarized stars and polarization standards. The instrumental polarization at the Cassegrain focus in the V band does not exceed 0.01%. The instrumental polarization for the Nasmyth focus varies between 2 and 4% within the visible range; we have constructed its model and give a method for its elimination from the measurements. For stars with an intrinsic polarization of less than 0.2% during observations at the Cassegrain focus the error is determined mainly by the photon and readout noises and can reach 5 × 10−5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Antipin, A. Belinski, A. Cherepashchuk, D. Cherjasov, A. Dodin, I. Gorbunov, S. Lamzin, M. Kornilov, et al., Inform. Bull. Var. Stars 6126, 1A (2015).

    ADS  Google Scholar 

  2. J. Bailey, P. W. Lucas, and J. H. Hough, Mon. Not. R. Astron. Soc. 405, 2570 (2010).

    ADS  Google Scholar 

  3. A. G. Basden, C. A. Haniff, and C. D. Mackay, Mon. Not. R. Astron. Soc. 345, 985 (2003).

    Article  ADS  Google Scholar 

  4. S. V. Berdyugina, A. V. Berdyugin, D. M. Fluri, and V. Piirola, Astrophys._J. Lett. 728, 6 (2011).

    Article  ADS  Google Scholar 

  5. J. B. Brekinridge, H. A. McAlister, and W. G. Robinson, Appl. Opt. 18, 1034 (1979).

    Article  ADS  Google Scholar 

  6. J. B. Breckinridge, W. S. T. Lam, and R. A. Chipman, Publ. Astron. Soc. Pacif. 127, 445 (2015).

    Article  ADS  Google Scholar 

  7. A. G. A. Brown, A. Vallenari, T. Prusti, et al. (GAIA Collab.), arXiv:1609.04303 (2016).

    Google Scholar 

  8. A. M. Cherepashchuk, A. A. Belinskii, V. G. Kornilov, Astron. Rep. (2017, in press).

    Google Scholar 

  9. G. G. Douglass, R. B. Hindsley, and C. E. Worley, Astrophys. J. Suppl. Ser. 111, 289 (1997).

    Article  ADS  Google Scholar 

  10. J. W. Goodman, Statistical Optics (Wiley, New York, 2000).

    Google Scholar 

  11. E. P. Horch, L. A. P. Bahi, J. R. Gaulin, S. B. Howell, W. H. Sherry, R. Baena Gallé, and W. F. van Altena, Astron. J. 143, 10 (2012).

    Article  ADS  Google Scholar 

  12. J. H. Hough, P. W. Lucas, J. A. Bailey, M. Tamura, E. Hirst, D. Harrison, and M. Bartholomew-Biggs, Publ. Astron. Soc. Pacif. 118, 1302 (2006).

    Article  ADS  Google Scholar 

  13. B. R. Johnson, J. Collins, M. E. Abroe, P. A. R. Ade, J. Bock, J. Borrill, A. Boscaleri, P. de Bernardis, et al., Astrophys. J. 665, 42 (2007).

    Article  ADS  Google Scholar 

  14. M. D. Johnson, V. L. Fish, S. S. Doeleman, A. E. Broderick, J. F. C. Wardle, and D. P. Marrone, Astrophys. J. 794, 150 (2014).

    Article  ADS  Google Scholar 

  15. F. Joos, E. Buenzli, H. M. Schmid, and Ch. Thalmann, Proc. SPIE 7016, 70161I (2008).

    Google Scholar 

  16. M. Yu. Khovrichev, A. M. Kulikova, E. N. Sokov, V. V. Dyachenko, D. A. Rastegaev, A. S. Beskakotov, Yu. Yu. Balega, B. S. Safonov, A. V. Dodin, and O. V. Vozyakova, Astron. Lett. 42, 686 (2016).

    Article  ADS  Google Scholar 

  17. M. Yu. Khovritchev and A. M. Kulikova, Astron. Lett. 41, 833 (2015).

    Article  ADS  Google Scholar 

  18. V. G. Kornilov, M. V. Kornilov, N. I. Shatsky, O. V. Vozyakova, I. A. Gorbunov, B. S. Safonov, S. A. Potanin, D. V. Cheryasov, and V. A. Senik, Astron. Lett. 42, 616 (2016).

    Article  ADS  Google Scholar 

  19. A. Labeyrie, Astron. Astrophys. 6, 85 (1970).

    ADS  Google Scholar 

  20. A.-L. Maire, M. Langlois, K. Dohlen, et al., arXiv:1609.06681 (2016).

  21. A. F. Maksimov, Yu. Yu. Balega, V. V. Dyachenko, E. V. Malogolovets, D. A. Rastegaev, and E. A. Semernikov, Astrophys. Bull. 64, 296 (2009).

    Article  ADS  Google Scholar 

  22. B. D. Mason, C. Martin, W. I. Hartkopf, D. J. Barry, M. E. Germain, G. G. Douglass, C. E. Worley, G. L. Wycoff, Th. Brummelaar, and O. G. Franz, Astron. J. 117, 1890 (1999).

    Article  ADS  Google Scholar 

  23. B. D. Mason, W. I. Hartkopf, G. L. Wycoff, and G. Wieder, Astron. J. 134, 1674 (2007).

    Article  Google Scholar 

  24. K. M. McPeak, S. V. Jayanti, S. J. P. Kress, et al., ACS Photon. 2, 326 (2015).

    Article  Google Scholar 

  25. B. R. M. Norris, P. G. Tuthill, M. J. Ireland, S. Lacour, A. A. Zijlstra, F. Lykou, T. M. Evans, P. Stewart, and T. R. Bedding, Nature 484, 220 (2012).

    Article  ADS  Google Scholar 

  26. F. Patat and M. Romaniello, Publ. Astron. Soc. Pacif. 118, 146 (2006).

    Article  ADS  Google Scholar 

  27. B. S. Rautela, G. C. Joshi, and J. C. Pandey, Bull. Astron. Soc. India 32, 159 (2004).

    ADS  Google Scholar 

  28. M. Rodenhuis, H. Canovas, S. V. Jeffers, and C. U. Keller, Proc. SPIE 7014, 6T (2008).

    Google Scholar 

  29. B. S. Safonov, Astron. Lett. 39, 237 (2013).

    Article  ADS  Google Scholar 

  30. B. S. Safonov, Mon. Not. R. Astron. Soc. 451, 3161 (2015).

    Article  ADS  Google Scholar 

  31. B. S. Safonov, Distortion of the Prisms of the Atmospheric Dispersion Compenastor for the Speckle Polarimeter (Gos. Astron. Inst. Sternberga, Moscow, 2016) [in Russian].

    Google Scholar 

  32. D. Schertl, Yu. Balega, T. Hanneman, K.-H. Hofmann, Th. Preibisch, and G. Weigelt, Astron. Astrophys. 361, 29 (2000).

    ADS  Google Scholar 

  33. G. D. Schmidt, R. Elston, and O. L. Lupie, Astron. J. 104, 1563 (1992).

    Article  ADS  Google Scholar 

  34. J. Tinbergen, Publ. Astron. Soc. Pacif. 119, 1371 (2007).

    Article  ADS  Google Scholar 

  35. A. A. Tokovinin, Stellar Interferometers (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  36. A. Tokovinin, B. D. Mason, and W. I. Hartkopf, Astron. J. 139, 743 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Safonov.

Additional information

Original Russian Text © B.S. Safonov, P.A. Lysenko, A.V. Dodin, 2017, published in Pis’ma v Astronomicheskii Zhurnal, 2017, Vol. 43, No. 5, pp. 243–253.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safonov, B.S., Lysenko, P.A. & Dodin, A.V. The speckle polarimeter of the 2.5-m telescope: Design and calibration. Astron. Lett. 43, 344–364 (2017). https://doi.org/10.1134/S1063773717050036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773717050036

Keywords

Navigation