Skip to main content

On possible circumbinary configurations of the planetary systems of α Centauri and EZ Aquarii

Abstract

Possible configurations of the planetary systems of the binary stars α Cen A–BandEZAqr A–C are analyzed. The P-type orbits—circumbinary ones, i.e., the orbits around both stars of the binary, are studied. The choice of these systems is dictated by the fact that α Cen is closest to us in the Galaxy, while EZ Aqr is the closest system whose circumbinary planets, as it turns out, may reside in the “habitability zone.” The analysis has been performed within the framework of the planar restricted three-body problem. The stability diagrams of circumbinary motion have been constructed: on representative sets of initial data (in the pericentric distance–eccentricity plane), we have computed the Lyapunov spectra of planetary motion and identified the domains of regular and chaotic motion through their statistical analysis. Based on present views of the dynamics and architecture of circumbinary planetary systems, we have determined the most probable planetary orbits to be at the centers of the main resonance cells, at the boundary of the dynamical chaos domain around the parent binary star, which allows the semimajor axes of the orbits to be predicted. In the case of EZ Aqr, the orbit of the circumbinary planet is near the habitability zone and, given that the boundary of this zone is uncertain, may belong to it.

This is a preview of subscription content, access via your institution.

References

  1. D. Benest, Astron. Astrophys. 206, 143 (1988).

    ADS  Google Scholar 

  2. D. Benest, Astron. Astrophys. 223, 361 (1989).

    ADS  Google Scholar 

  3. D. Benest and R. Gonczi, Earth, Moon Planets 81, 7 (1998).

    ADS  Article  Google Scholar 

  4. D. Benest and R. Gonczi, Earth, Moon Planets 93, 175 (2004).

    ADS  Article  Google Scholar 

  5. V. V. Bobylev, Astron. Lett. 36, 816 (2010).

    ADS  Article  Google Scholar 

  6. H. F. von Bremen, F. E. Udwadia, and W. Proskurowski, Physica D 101, 1 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  7. L. Casagrande, C. Flynn, and M. Bessell, Mon. Not. R. Astron. Soc. 389, 585 (2008).

    ADS  Article  Google Scholar 

  8. X. Delfosse, T. Forveille, S. Udry, J.-L. Beuzit, M. Mayor, and C. Perrier, Astron. Astrophys. 350, 39 (1999).

    ADS  Google Scholar 

  9. L. R. Doyle, J. A. Carter, D. C. Fabrycky, R.W. Slawson, S. B. Howell, J. N. Winn, J. A. Orosz, A. Prša, et al., Science 333, 1602 (2011).

    ADS  Article  Google Scholar 

  10. M. Endl, M. Kürster, S. Els, A. P. Hatzes, and W. D. Cochran, Astron. Astrophys. 374, 675 (2001).

    ADS  Article  Google Scholar 

  11. M. England, Mon. Not. R. Astron. Soc. 191, 23 (1980).

    ADS  Google Scholar 

  12. E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems (Springer, Berlin, 1987).

    Book  MATH  Google Scholar 

  13. M. J. Holman and P. A. Wiegert, Astron. J. 117, 621 (1999).

    ADS  Article  Google Scholar 

  14. Su-Shu Huang, Publ. Astron. Soc. Pacif. 72, 106 (1960).

    ADS  Article  Google Scholar 

  15. R. Kopparapu, R. Ramirez, J. F. Kasting, V. Eymet, T. D. Robinson, S. Mahadevan, R. C. Terrien, Sh. Domagal-Goldman, V. Meadows, and R. Deshpande, Astrophys. J. 765, 131 (2013).

    ADS  Article  Google Scholar 

  16. V. B. Kostov, P. R. McCullough, T. C. Hinse, Z. I. Tsvetanov, G. Hébrard, R. F. Díaz, M. Deleuil, and J. A. Valenti, Astrophys. J. 770, 52 (2013).

    ADS  Article  Google Scholar 

  17. V. B. Kostov, P. R. McCullough, J. A. Carter, M. Deleuil, R. F. Díaz, D. C. Fabrycky, G. Hé brard, T. C. Hinse, et al., Astrophys. J. 784, 14 (2014); Astrophys. J. 787, 93(E) (2014).

    ADS  Article  Google Scholar 

  18. V. V. Kouprianov and I. I. Shevchenko, Astron. Astrophys. 410, 749 (2003).

    ADS  Article  Google Scholar 

  19. V. V. Kouprianov and I. I. Shevchenko, Icarus 176, 224 (2005).

    ADS  Article  Google Scholar 

  20. J. Lissauer, E. Quintana, J. Chambers, M. J. Duncan, and F. C. Adams, Rev.Mex. Astron. Astrophys. 22, 99 (2004).

    ADS  Google Scholar 

  21. P. A. Mason, J. I. Zuluaga, P. A. Cuartas-Restrepo, and J. M. Clark, Int. J. Astrobiol. 14, 391 (2015).

    Article  Google Scholar 

  22. A. V. Melnikov and I. I. Shevchenko, Sol. Sys. Res. 32, 480 (1998).

    ADS  Google Scholar 

  23. S. Meschiari, Astrophys. J. 752, 71 (2012).

    ADS  Article  Google Scholar 

  24. C. D. Murray and S. F. Dermott, Solar System Dynamics (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  25. S.-J. Paardekooper, Z.M. Leinhardt, P. Thébault, and C. Baruteau, Astrophys. J. 754, L16 (2012).

    ADS  Article  Google Scholar 

  26. E. A. Popova and I. I. Shevchenko, Astron. Lett. 38, 581 (2012).

    ADS  Article  Google Scholar 

  27. E. A. Popova and I. I. Shevchenko, Astrophys. J. 769, 152 (2013).

    ADS  Article  Google Scholar 

  28. E. Popova, in Proceedings of the IAU Symposium No. 310, Ed. by Z. Knezevic and A. Lemaitre (IAU, 2014), p. 98.

  29. D. Pourbaix, C. Neuforge-Verheecke, and F. Noels, Astron. Astrophys. 344, 172 (1999).

    ADS  Google Scholar 

  30. R. Powell, An Atlas of the Universe (2006). wwwatlasoftheuniversecom

    Google Scholar 

  31. Research Consortium on Nearby Stars (2015). wwwreconsorg

  32. I. I. Shevchenko and V. V. Kouprianov, Astron. Astrophys. 394, 663 (2002).

    ADS  Article  Google Scholar 

  33. I. I. Shevchenko and A. V. Mel’nikov, JETP Lett. 77, 642 (2003).

    ADS  Article  Google Scholar 

  34. I. I. Shevchenko, in Asteroids, Comets, Meteors, Ed. by B. Warmbein (ESA, Berlin, 2002), p. 367.

  35. I. I. Shevchenko, Astrophys. J. 799, 8 (2015).

    ADS  Article  Google Scholar 

  36. P. Thébault, F. Marzari, and H. Scholl, Mon. Not. R. Astron. Soc. 388, 1528 (2008).

    ADS  Article  Google Scholar 

  37. P. Thébault, F. Marzari, and H. Scholl, Mon. Not. R. Astron. Soc. 393, 21 (2009).

    ADS  Article  Google Scholar 

  38. W. Welsh, J. A. Orosz, J. A. Carter, and D. C. Fabrycky, Proceedings of the IAU Symp. No. 293, Ed. by N. Haghighipour (IAU, 2014), p. 125.

  39. P. A. Wiegert and M. J. Holman, Astron. J. 113, 1445 (1997).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Shevchenko.

Additional information

Original Russian Text © E.A. Popova, I.I. Shevchenko, 2016, published in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 4, pp. 294–301.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Popova, E.A., Shevchenko, I.I. On possible circumbinary configurations of the planetary systems of α Centauri and EZ Aquarii. Astron. Lett. 42, 260–267 (2016). https://doi.org/10.1134/S106377371604006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377371604006X

Keywords

  • celestial mechanics
  • planetary systems
  • binary stars
  • α Centauri
  • EZ Aquarii
  • methods
  • numerical