Skip to main content
Log in

Probing Milky Way’s hot gas halo density distribution using the dispersion measure of pulsars

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

A number of recent studies indicates a significant amount of ionized gas in a form of the hot gas halo around the Milky Way. The halo extends over the region of 100 kpc and may be acountable for the missing baryon mass. In this paper we calculate the contribution of the proposed halo to the dispersion measure (DM) of the pulsars. The Navarro, Frenk, and White (NFW), Maller and Bullock (MB), and Feldmann, Hooper, and Gnedin (FHG) density distibutions are considered for the gas halo. The data set includes pulsars with the distance known independently from the DM, e.g., pulsars in globular clusters, LMC, SMC and pulsars with known parallax. The results exclude the NFW distribution for the hot gas, while the more realisticMB and FHG models are compatible with the observed dispersion measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, et al., arXiv:1502. 01589 (2015).

  2. E. F. Bell, D. B. Zucker, V. Belokurov, S. Sharma, K. V. Johnston, J. S. Bullock, D. W. Hogg, K. Jahnke, et al., Astrophys. J. 680, 295 (2008); arXiv:0706. 0004.

  3. J. N. Bregman, G. Camargo Alves, and M. J. Miller, arXiv:1506. 03469 (2015).

  4. J. M. Cordes and T. J. W. Lazio, astro-ph/0207156 (2002).

  5. T. Fang, J. Bullock, and M. Boylan-Kolchin, Astrophys. J. 11, 762 (2012), arXiv:1211. 0758v1.

  6. R. Feldmann, D. Hooper, and N. Y. Gnedin, Astrophys. J. 763, 21 (2013), arXiv:1205. 0249.

    Article  ADS  Google Scholar 

  7. K. M. Ferriere, Rev. Mod. Phys. 81, 1031 (2001), astro-ph/0106359v1.

    Article  ADS  Google Scholar 

  8. P. C. Freire. http://www. naic. edu/pfreire/GCpsrhtml

  9. B. M. Gaensler, G. J. Madsen, S. Chatterjee, and S. A. Mao, Publ. Astron. Soc. Austral. 25, 184 (2008), arXiv:0808. 2550.

    Article  ADS  Google Scholar 

  10. A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, and M. Galeazzi, Astrophys. J. 756, L8 (2012), arXiv:1205. 5037v4.

    Article  ADS  Google Scholar 

  11. L. M. Haffner, R.-J. Dettmar, J. E. Beckman, K. Wood, J. D. Slavin, C. Giammanco, G. J. Madsen, A. Zurita, R. J. Reynolds, Rev. Mod. Phys. 81, 969 (2009), arXiv:0901. 0941.

    Article  ADS  Google Scholar 

  12. W. E. Harris, Astron. J. 112, 1487 (1996), http://physwwwmcmasterca/harris/mwgcdat

    Article  ADS  Google Scholar 

  13. J. W. T. Hessels, A. Possenti, and M. Bailes, arXiv:1501.00086 (2014).

  14. G. B. Hobbs and R. N. Manchester. http://wwwatnfcsiroau/research/pulsar/psrcat/

  15. G. de Lucia, G. Kauffmann, and S. D. M. White, Mon. Not. R. Astron. Soc. 349, 1101 (2004), astroph/0310268.

    Article  ADS  Google Scholar 

  16. A. H. Maller and J. S. Bullock, Mon. Not. R. Astron. Soc. 355, 694 (2004), astro-ph/0406632.

    Article  ADS  Google Scholar 

  17. A. Marasco and F. Fraternali, arXiv:1010. 3563v1 (2010).

  18. A. A. Meiksin, Rev. Mod. Phys. 81, 1405 (2009), arXiv:0711. 3358.

    Article  ADS  Google Scholar 

  19. M. Miller and J. Bregman, Astrophys. J. 770, 118 (2013), arXiv:1305. 2430.

    Article  ADS  Google Scholar 

  20. M. Miller and J. Bregman, Astrophys. J. 800, 14 (2015), arXiv:1412.3116.

    Article  ADS  Google Scholar 

  21. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997), astro-ph/9611107.

    Article  ADS  Google Scholar 

  22. F. Nicastro, S. Mathur, and M. Elvis, Science 319, 55 (2008), arXiv:0712.2375.

    Article  ADS  Google Scholar 

  23. Planck Collab., arXiv:1303. 5076 (2013).

  24. P. Singh, B. B. Nath, S. Majumdar, and J. Silk, arXiv:1408.4896 (2014).

  25. L. Spitzer, Astrophys. J. 124, 20 (1956).

    Article  ADS  Google Scholar 

  26. B. S. Tanenbaum, G. A. Zeissig, and F. D. Drake, Science 160, 760 (1968).

    Article  ADS  Google Scholar 

  27. J. H. Taylor and J. M. Cordes, Astrophys. J. 411, 674 (1993).

    Article  ADS  Google Scholar 

  28. J. P. W. Verbiest, D. R. Lorimer, and M. A. McLaughlin, Mon. Not. R. Astron. Soc. 405, 564 (2010), arXiv:1002.1213.

    ADS  Google Scholar 

  29. D. G. York, Astrophys. J. 193, 127 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. V. Zhezher.

Additional information

Original Russian Text © Ya.V. Zhezher, E.Ya. Nugaev, G.I. Rubtsov, 2016, published in Pis’ma v Astronomicheskii Zhurnal, 2016, Vol. 42, No. 3, pp. 200–209.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhezher, Y.V., Nugaev, E.Y. & Rubtsov, G.I. Probing Milky Way’s hot gas halo density distribution using the dispersion measure of pulsars. Astron. Lett. 42, 173–181 (2016). https://doi.org/10.1134/S1063773716030063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773716030063

Keywords

Navigation