Skip to main content
Log in

H2O maser pumping: The effect of quasi-resonance energy transfer in collisions between H2 and H2O molecules

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The effect of quasi-resonance energy transfer in collisions between H2 and H2O molecules in H2O maser sources is investigated. New data on the state-to-state rate coefficients for collisional transitions for H2O and H2 molecules are used in the calculations. The results of ortho-H2O level population inversion calculations for the 22.2-, 380-, 439-, and 621-GHz transitions are presented. The ortho-H2O level population inversion is shown to depend significantly on the population distribution of the para-H2 J = 0 and 2 rotational levels. The possibility of quasi-resonance energy transfer in collisions between H2 molecules at highly excited rotational-vibrational levels and H2O molecules is considered. The quasi-resonance energy transfer effect can play a significant role in pumping H2O masers in the central regions of active galactic nuclei and in star-forming regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Babkovskaia and J. Poutanen, Astron. Astrophys. 418, 117 (2004).

    Article  ADS  Google Scholar 

  2. G. T. Bolgova, V. S. Strelnitskii, and I. K. Shmeld, Sov. Astron. 21, 468 (1977).

    ADS  Google Scholar 

  3. J. le Bourlot, F. le Petit, C. Pinto, E. Roueff, and F. Roy, Astron. Astrophys. 541, A76 (2012).

    Article  Google Scholar 

  4. P. Castangia, C. M. V. Impellizzeri, J. P. McKean, C. Henkel, A. Brunthaler, A. L. Roy, O. Wucknitz, J. Ott, et al., Astron. Astrophys. 529, A150 (2011).

    Article  ADS  Google Scholar 

  5. E. Churchwell, A. Witzel, W. Huchtmeier, I. Pauliny-Toth, J. Roland, and W. Sieber, Astron. Astrophys. 54, 969 (1977).

    ADS  Google Scholar 

  6. A. J. Collison and W. D. Watson, Astrophys. J. 452, L103 (1995).

    ADS  Google Scholar 

  7. I. Dabrowski, Canad. J. Phys. 62, 1639 (1984).

    Article  ADS  Google Scholar 

  8. F. Daniel, M. -L. Dubernet, and A. Grosjean, Astron. Astrophys. 536, A76 (2011).

    Article  ADS  Google Scholar 

  9. F. Daniel, M. -L. Dubernet, F. Pacaud, and A. Grosjean, Astron. Astrophys. 517, A13 (2010).

    Article  ADS  Google Scholar 

  10. B. T. Draine, Ann. Rev. Astron. Astrophys. 41, 241 (2003).

    Article  ADS  Google Scholar 

  11. M. -L. Dubernet, F. Daniel, A. Grosjean, and C. Y. Lin, Astron. Astrophys. 497, 911 (2009).

    Article  ADS  Google Scholar 

  12. M. -L. Dubernet, A. Grosjean, D. Flower, E. Roueff, F. Daniel, N. Moreau, and B. Debray, J. Plasma Fusion Res. Ser. 7, 356 (2006).

    Google Scholar 

  13. M. -L. Dubernet, M. H. Alexander, Y. A. Ba, N. Balakrishnan, C. Balança, C. Ceccarelli, J. Cernicharo, F. Daniel, et al., Astron. Astrophys. 553, A50 (2013).

    Article  ADS  Google Scholar 

  14. M. Elitzur, D. J. Hollenbach, and C. F. McKee, Astrophys. J. 346, 983 (1989).

    Article  ADS  Google Scholar 

  15. D. R. Flower, Molecular Collisions in the Interstellar Medium (Cambridge Univ. Press, New York, 2007).

    Book  Google Scholar 

  16. S. Green, S. Maluendes, and A. D. McLean, Astrophys. J. Suppl. Ser. 85, 181 (1993).

    Article  ADS  Google Scholar 

  17. L. J. Greenhill, R. S. Booth, S. P. Ellingsen, J. R. Herrnstein, D. L. Jauncey, P. M. McCulloch, J. M. Moran, R. P. Norris, et al., Astrophys. J. 590, 162 (2003).

    Article  ADS  Google Scholar 

  18. D. J. Hollenbach and A. G. G. M. Tielens, Rev. Mod. Phys. 71, 173 (1999).

    Article  ADS  Google Scholar 

  19. D. Hollenbach, M. Elitzur, and C. F. McKee, Astrophys. J. 773, 70 (2013).

    Article  ADS  Google Scholar 

  20. E. M. L. Humphreys, L. J. Greenhill, M. J. Reid, H. Beuther, J. M. Moran, M. Gurwell, D. J. Wilner, and P. T. Kondratko, Astrophys. J. 634, L133 (2005).

    Article  ADS  Google Scholar 

  21. J. F. Kartje, A. Königl, and M. Elitzur, Astrophys. J. 513, 180 (1999).

    Article  ADS  Google Scholar 

  22. T. Liljeström, K. Mattila, M. Toriseva, and R. Anttila, Astron. Astrophys. Suppl. Ser. 79, 19 (1989).

    ADS  Google Scholar 

  23. P. R. Maloney, D. J. Hollenbach, and A. G. G. M. Tielens, Astrophys. J. 466, 561 (1996).

    Article  ADS  Google Scholar 

  24. P. R. Malony, Publ. Astron. Soc. Aust. 19, 401 (2002).

    Article  ADS  Google Scholar 

  25. L. I. Matveenko and V. A. Demichev, Astron. Rep. 54, 986 (2010).

    Article  ADS  Google Scholar 

  26. L. I. Matveenko, P. J. Diamond, and D. A. Graham, Astron. Rep. 44, 592 (2000).

    Article  ADS  Google Scholar 

  27. G. J. Melnick, K. M. Menten, T. G. Phillips, and T. Hunter, Astrophys. J. 416, L37 (1993).

    Article  ADS  Google Scholar 

  28. J. M. Moran, Frontiers of Astrophysics: A Celebration of NRAO’s 50th Anniversary, Charlottesville, 2008, Ed. by A. H. Bridle, J. J. Condon, and G. C. Hunt, ASP Conf. Ser. 395, 87 (2008).

  29. A. V. Nesterenok, Astron. Lett. 39, 717 (2013).

    Article  ADS  Google Scholar 

  30. A. V. Nesterenok and D. A. Varshalovich, Astron. Lett. 37, 456 (2011).

    Article  ADS  Google Scholar 

  31. D. A. Neufeld, P. R. Maloney, and S. Conger, Astrophys. J. 436, L127 (1994).

    Article  ADS  Google Scholar 

  32. D. A. Neufeld, Y. Wu, A. Kraus, K. M. Menten, V. Tolls, G. J. Melnick, and Z. Nagy, Astrophys. J. 769, 48 (2013).

    Article  ADS  Google Scholar 

  33. K. -C. Ng, J. Chem. Phys. 61, 2680 (1974).

    Article  ADS  Google Scholar 

  34. F. Palagi, R. Cesaroni, G. Comoretto, M. Felli, and V. Natale, Astron. Astrophys. Suppl. Ser. 101, 153 (1993).

    ADS  Google Scholar 

  35. A. B. Peck, C. Henkel, J. S. Ulvestad, A. Brunthaler, H. Falcke, M. Elitzur, K. M. Menten, and J. F. Gallimore, Astrophys. J. 590, 149 (2003).

    Article  ADS  Google Scholar 

  36. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C. The Art of Scientific Computing (Cambridge Univ. Press, Cambridge, 1997).

    Google Scholar 

  37. L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, L. Bizzocchi, et al., J. Quant. Spectrosc. Rad. Transfer 130, 4 (2013).

    Article  ADS  Google Scholar 

  38. G. B. Rybicki and D. G. Hummer, Astron. Astrophys. 245, 171 (1991).

    ADS  Google Scholar 

  39. P. M. dos Santos and J. R. D. Lépine, Nature 278, 34 (1979).

    Article  ADS  Google Scholar 

  40. V. S. Strel’nitskii, Sov. Astron. 17, 717 (1973).

    Google Scholar 

  41. A. Tarchi, Proc. IAU Symp. 287, 323 (2012).

    Article  ADS  Google Scholar 

  42. J. Tennyson, N. F. Zobov, R. Williamson, and O. L. Polyansky, J. Phys. Chem. Ref. Data 30, 735 (2001).

    Article  ADS  Google Scholar 

  43. J. M. Torrelles, N. Patel, J. F. Gómez, G. Anglada, and L. Uscanga, Astrophys. Space Sci. 295, 53 (2005).

    Article  ADS  Google Scholar 

  44. L. Uscanga, J. Cantó, S. Curiel, G. Anglada, J. M. Torrelles, N. A. Patel, J. F. Gómez, and A. C. Raga, Astrophys. J. 634, 468 (2005).

    Article  ADS  Google Scholar 

  45. P. Valiron, M. Wernli, A. Faure, L. Wiesenfeld, C. Rist, S. Kedžuch, and J. Noga, J. Chem. Phys. 129, 134306 (2008).

    Article  ADS  Google Scholar 

  46. D. A. Varshalovich, W. K. Kegel, and S. Chandra, Sov. Astron. Lett. 9, 209 (1983).

    ADS  Google Scholar 

  47. J. C. Weingartner and B. T. Draine, Astrophys. J. 548, 296 (2001).

    Article  ADS  Google Scholar 

  48. S. A. Wrathmall, A. Gusdorf, and D. R. Flower, Mon. Not. R. Astron. Soc. 382, 133 (2007).

    Article  ADS  Google Scholar 

  49. J. A. Yates, D. Field, and M. D. Gray, Mon. Not. R. Astron. Soc. 285, 303 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nesterenok.

Additional information

Original Russian Text © A.V. Nesterenok, D.A. Varshalovich, 2014, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2014, Vol. 40, No. 7, pp. 473–483.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterenok, A.V., Varshalovich, D.A. H2O maser pumping: The effect of quasi-resonance energy transfer in collisions between H2 and H2O molecules. Astron. Lett. 40, 425–434 (2014). https://doi.org/10.1134/S1063773714070068

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773714070068

Keywords

Navigation