Skip to main content
Log in

Oscillations in the lower solar atmosphere at the base of coronal holes

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The oscillatory processes in the relatively quiet solar atmosphere, at the base of an extensive coronal hole, have been investigated. The properties of the oscillations in a number of parameters related mainly to the Ca II line intensity have been analyzed in areas belonging to various chromospheric network structures (cells, networks, flocculi, etc.). The goal of this study was to reveal peculiarities of the oscillatory process in the spatial areas located (in projection) at the center of a coronal hole, near its boundary, and at a bright coronal point at various heights of the solar atmosphere (from the photosphere to the middle chromosphere). In most structural elements, the low- and high-frequency components of the spectrum have been found to increase and decrease, respectively, with height. The oscillatory power of the low-frequency oscillations is at a maximum in the areas bordering the bright magnetic network elements. The power of the three-minute, five-minute, and low-frequency oscillations decreases at the centers of the bright chromospheric network. The phase relations point to the propagation of waves mainly at the boundaries of the bright chromospheric network and intermediate (in brightness) network elements. In two of the three investigated regions, the power of the five-minute oscillations (2.4–4.0 mHz) in cells is higher than that of the three-minute ones (5.2–6.8 mHz) at the investigated levels of the quiet solar atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bel and B. Leroy, Astron. Astrophys. 55, 239 (1977).

    ADS  MATH  Google Scholar 

  2. G. J. J. Botha, T. D. Arber, V. M. Nakariakov, and Y. D. Zhugzhda, Astrophys. J. 728, 84 (2011).

    Article  ADS  Google Scholar 

  3. P. N. Brandt, R.G. Rutten, R. A. Shine, and J. Trujillo Bueno, ASP Conf. Ser. 26, 161 (1992).

    ADS  Google Scholar 

  4. B. De Pontieu, R. Erdelyi, and S. P. James, Nature 430, 536 (2004).

    Article  ADS  Google Scholar 

  5. K. P. Dere, Astron. Astrophys. 491, 561 (2008).

    Article  ADS  Google Scholar 

  6. R. Erdélyi and V. Fedun, Science 318, 1572 (2007).

    Article  ADS  Google Scholar 

  7. L. Golub, A. S. Krieger, J. K. Silk, et al., Astrophys. J. 189, L93 (1974).

    Article  ADS  Google Scholar 

  8. G. R. Gupta, S. Subramanian, D. Banerjee, et al., Solar Phys. 282, 67 (2013).

    Article  ADS  Google Scholar 

  9. S. M. Jefferies, S. M. McIntosh, J. D. Armstrong, et al., Astrophys. J. 648, L151 (2006).

    Article  ADS  Google Scholar 

  10. D. B. Jess, M. Mathioudakis, R. Erdélyi, et al., Science 323, 1582 (2009).

    Article  ADS  Google Scholar 

  11. E. Khomenko and I. Calvo Santamaria, arXiv: 1302.4351v1 (2013).

  12. E. Khomenko, R. Centano, M. Collados, and J. Trujillo Bueno, Astrophys. J. 676, L85 (2008a).

    Article  ADS  Google Scholar 

  13. E. Khomenko, M. Collados, and T. Felipe, Solar Phys. 251, 589 (2008b).

    Article  ADS  Google Scholar 

  14. N. I. Kobanov, Astron. Astrophys. Trans. 19, 103 (2000).

    Article  ADS  Google Scholar 

  15. I. Kontigiannis, G. Tsiropoula, and K. Tziotziou, Astron. Astrophys. 510, A41 (2010a).

    Article  ADS  Google Scholar 

  16. I. Kontigiannis, G. Tsiropoula, K. Tziotziou, and M. K. Georgoulis, Astron. Astrophys. 524, A12 (2010b).

    Article  ADS  Google Scholar 

  17. J. M. Krijger, R. J. Rutten, B.W. Lites, et al., Astron. Astrophys. 379, 1052 (2001).

    Article  ADS  Google Scholar 

  18. G. V. Kuklin and M. Kopetskii, Issled. Geomagn., Aeronom. Fiz. Solntsa 2, 167 (1971).

    Google Scholar 

  19. B.W. Lites, R. J. Rutten, and W. Kalkofen, Astrophys. J. 414, 345 (1993).

    Article  ADS  Google Scholar 

  20. M. S. Marsh, R. W. Walsh, and B. J. I. Bromage, Astron. Astrophys. 393, 649 (2002).

    Article  ADS  Google Scholar 

  21. K. P. Reardon, H. Uitenbroek, and G. Cauzzi, Astron. Astrophys. 500, 1239 (2009).

    Article  ADS  Google Scholar 

  22. R. J. Rutten, ASP Conf. Ser. 368, 27 (2007).

    ADS  Google Scholar 

  23. R. J. Rutten, Mem. Soc. Astron. It. 81, 565 (2010).

    ADS  Google Scholar 

  24. R. J. Rutten and H. Uitenbroek, Astron. Astrophys. 540, A86 (2012).

    Article  ADS  Google Scholar 

  25. R. A. Shine and J. L. Linsky, Solar Phys. 39, 49 (1974).

    Article  ADS  Google Scholar 

  26. P. Song and V. M. Vasyliynas, J. Geophys. Res. 116, A09104 (2011).

    ADS  Google Scholar 

  27. R. B. Teplitskaya, O. A. Ozhogina, and I. P. Turova, Astron. Lett. 32, 120 (2006).

    Article  ADS  Google Scholar 

  28. R. B. Teplitskaya, I. P. Turova, and O. A. Ozhogina, Astron. Lett. 35, 712 (2009a).

    Article  ADS  Google Scholar 

  29. R. B. Teplitskaya, O. A. Ozhogina, I. P. Turova, and R. A. Sych, Soln.-Zemn. Fiz. 14, 3 (2009b).

    Google Scholar 

  30. R. B. Teplitskaya, I. P. Turova, and O. A. Ozhogina, Solar Phys. 262, 53 (2010).

    Article  ADS  Google Scholar 

  31. I. P. Turova, Astron. Lett. 37, 799 (2011).

    Article  ADS  Google Scholar 

  32. G.S. Vaiana, A. S. Krieger, L. P. Van Speybroeck, and T. Zehnpfennig, Bull. Am. Phys. Soc. 15, 611 (1970).

    Google Scholar 

  33. A. Vecchio, G. Cauzzi, K. P. Reardon, et al., Astron. Astrophys. 461, L1 (2007).

    Article  ADS  Google Scholar 

  34. A. Vecchio, G. Cauzzi, and K. P. Reardon, Astron. Astrophys. 494, 269 (2009).

    Article  ADS  Google Scholar 

  35. F. Wöger, S. Wedemeyer-Böhm, W. Schmidt, and O. von der Lühe, Astron. Astrophys. 459, L9 (2006).

    Article  ADS  Google Scholar 

  36. T. V. Zaqarashvili, Astron. Astrophys. 399, L15 (2003).

    Article  ADS  Google Scholar 

  37. T. V. Zaqarashvili and R. Erdélyi, Space Sci. Rev. 149, 355 (2009).

    Article  ADS  Google Scholar 

  38. Y. D. Zhugzhda and N. S. Dzhalilov, Astron. Astrophys. 132, 45 (1984a).

    ADS  Google Scholar 

  39. Y. D. Zhugzhda and N. S. Dzhalilov, Astron. Astrophys. 132, 52 (1984b).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Turova.

Additional information

Original Russian Text © I.P. Turova, 2014, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2014, Vol. 40, Nos. 2–3, pp. 168–184.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turova, I.P. Oscillations in the lower solar atmosphere at the base of coronal holes. Astron. Lett. 40, 145–160 (2014). https://doi.org/10.1134/S1063773714030098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773714030098

Keywords

Navigation