Skip to main content
Log in

Superbroad component in emission lines of SS 433

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have detected new components in stationary emission lines of SS 433; these are the superbroad components that are low-contrast substrates with a width of 2000–2500 km s−1 in He I λ4922 and Hβ and 4000–5000 kms−1 in He II λ4686. Based on 44 spectra taken during four years of observations from 2003 to 2007, we have found that these components in the He II and He I lines are eclipsed by the donor star; their behavior with precessional and orbital phases is regular and similar to the behavior of the optical brightness of SS 433. The same component in Hβ shows neither eclipses nor precessional variability. We conclude that the superbroad components in the helium and hydrogen lines are different in origin. Electron scattering is shown to reproduce well the superbroad component of Hβ at a gas temperature of 20–35 kK and an optical depth for Thomson scattering τ ≈ 0.25−0.35. The superbroad components of the helium lines are probably formed in the wind from the supercritical accretion disk. We have computed a wind model based on the concept of Shakura-Sunyaev supercritical disk accretion. The main patterns of the He II line profiles are well reproduced in this model: not only the appearance of the superbroad component but also the evolution of the central two-component part of the profile of this line during its eclipse by the donor star can be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Abell and B. Margon, Nature 279, 701 (1979).

    Article  ADS  Google Scholar 

  2. V. L. Afanasiev and A. V. Moiseev, Astron. Lett. 31, 194 (2005).

    Article  ADS  Google Scholar 

  3. K. Blundell, M. Bowler, and L. Schmidtobreick, Astrophys. J. 678, L47 (2008).

    Article  ADS  Google Scholar 

  4. M. Bowler, Astron. Astrophys. 516, A24 (2010).

    Article  ADS  Google Scholar 

  5. M. Bowler, Astron. Astrophys. 531, A107 (2011).

    Article  ADS  Google Scholar 

  6. A. Cherepashchuk, Space Sci. Rev. 102, 23 (2002).

    Article  ADS  Google Scholar 

  7. A. Cherepashchuk, R. Sunyaev, S. Fabrika, et al., Astron. Astrophys. 437, 561 (2005).

    Article  ADS  Google Scholar 

  8. R. Clegg, Gemini 31, 8 (1991).

    ADS  Google Scholar 

  9. D. Crampton and J. Hutchings, Astrophys. J. 251, 604 (1981).

    Article  ADS  Google Scholar 

  10. M. A. Dopita and A. M. Cherepashchuk, Vistas Astron. 25, 51 (1981).

    Article  ADS  Google Scholar 

  11. S. Eikenberry, P. Cameron, B. Fierce, et al., Astrophys. J. 561, 1027 (2001).

    Article  ADS  Google Scholar 

  12. S. Fabrika, Mon. Not. R. Astron. Soc. 261, 241 (1993).

    ADS  Google Scholar 

  13. S. Fabrika, Astrophys. Space Phys. Rev. 12, 1 (2004).

    ADS  Google Scholar 

  14. S. Fabrika and L. Bychkova, Astron. Astrophys. 240, L5 (1990).

    ADS  Google Scholar 

  15. S. Fabrika and T. Irsmambetova, in New Views on MICROQUASARS, Proceedings of the 4th Microquasars Workshop (Institut d’Etudes Scientifiques de Cargese, Corsica, France, 2003), p. 276.

    Google Scholar 

  16. S. Fabrika and A. Mescheryakov, in Galaxies and their Constituents at the Highest Angular Resolutions, Proceedings of the IAU Symposium No. 205, Manchester, UK, Aug. 15–18, 2000, Ed. by R. T. Schilizzi (IAU, 2001), p. 268.

  17. S. Fabrika and O. Sholuhova, in Proceedings of the 7th Microquasar Workshop: Microquasars and Beyond, Foca, Izmir, Turkey, Sep. 1–5, 2008 (2008), p. 52.

    Google Scholar 

  18. H. Feng and R. Soria, New Astron. Rev. 55, 166 (2011).

    Article  ADS  Google Scholar 

  19. A. Filippenko, R. Romani, W. Sargent, et al., Astron. J. 216, 822 (1988).

    Google Scholar 

  20. E. Filippova, M. Revnivtsev, S. Fabrika, et al., Astron. Astrophys. 460, 125 (2006).

    Article  ADS  Google Scholar 

  21. A. Foster, L. Ji, R. Smith, et al., Astrophys. J. 756, 128 (2012).

    Article  ADS  Google Scholar 

  22. D. R. Gies, W. Huang, and M. V. McSwain, Astrophys. J. 578, L67 (2002).

    Article  ADS  Google Scholar 

  23. V. Goranskij, Perem. Zvezdy 31, 5 (2011).

    ADS  Google Scholar 

  24. V. Goranskij, V. Esipov, and A. Cherepashchuk, Sov. Astron. 42, 209 (1998).

    Google Scholar 

  25. T. Hillwig and D. Gies, Astrophys. J. 676, L37 (2008).

    Article  ADS  Google Scholar 

  26. T. Hillwig, D. Gies, W. Huang, et al., Astrophys. J. 615, 422 (2004).

    Article  ADS  Google Scholar 

  27. D. Hummer and D. Mihalas, Astrophys. J. 150, L57 (1967).

    Article  ADS  Google Scholar 

  28. R. Humphreys et al., Astrophys. J. 743, 118 (2011).

    Article  ADS  Google Scholar 

  29. J. Kallrath and E. F. Milone, Eclipse Binary System: Modeling and Analysis (Springer, New York, 1999).

    Book  Google Scholar 

  30. I. M. Kopylov, L. V. Bychkova, S. N. Fabrika, et al., Sov. Astron. Lett. 15, 474 (1989).

    ADS  Google Scholar 

  31. K. Kubota, Y. Ueda, S. Fabrika, et al., Astrophys. J. 709, 1374 (2010).

    Article  ADS  Google Scholar 

  32. E. M. Leibowitz, Mon. Not. R. Astron. Soc. 210, 279 (1984).

    ADS  Google Scholar 

  33. G. V. Lipunova, Astron. Lett. 25, 508 (1999).

    ADS  Google Scholar 

  34. A. Panferov, S. Fabrika, and V. Rakhimov, Astron. Rep. 41, 342 (1997).

    ADS  Google Scholar 

  35. S. Perez and K. Blundell, Mon. Not. R. Astron. Soc. 408, 2 (2010).

    Article  ADS  Google Scholar 

  36. J. Poutanen, G. Lipunova, S. Fabrika, et al., Mon. Not. R. Astron. Soc. 377, 1187 (2007).

    Article  ADS  Google Scholar 

  37. L. Pozdnyakov, I. Sobol, and R. Syunyaev, Astrophys. Space Phys. Rev. 2, 189 (1983).

    ADS  Google Scholar 

  38. S. Sazonov and R. Sunyaev, Astrophys. J. 543, 28 (2000).

    Article  ADS  Google Scholar 

  39. N. Shakura and R. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  40. O. N. Sholukhova, S. N. Fabrika, A. V. Zharova, et al., Astrophys Bull. 66, 123 (2011).

    Article  ADS  Google Scholar 

  41. V. Sobolev, Sov. Astron. 1, 678 (1957).

    ADS  Google Scholar 

  42. M. Volonteri and M. Rees, Astrophys. J. 633, 624 (2005).

    Article  ADS  Google Scholar 

  43. R. Warmels, ASP Conf. Ser. 25, 115 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Medvedev.

Additional information

Original Russian Text © P.S. Medvedev, S.N. Fabrika, V.V. Vasiliev, V.P. Goranskij, E.A. Barsukova, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 12, pp. 916–933.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedev, P.S., Fabrika, S.N., Vasiliev, V.V. et al. Superbroad component in emission lines of SS 433. Astron. Lett. 39, 826–843 (2013). https://doi.org/10.1134/S1063773713120062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713120062

Keywords

Navigation