Skip to main content
Log in

Kinematics of the active region of the quasar 3C 345

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The fine structure of the quasar 3C 345 in polarized emission at 7 mm and 2 cm has been investigated. The kinematics is shown to correspond to an anticentrifuge: the thermal plasma of the surrounding space accretes onto the disk, flows to the center, and is ejected in the form of a rotating bipolar outflow that carries away the excess angular momentum as it accumulates. The bipolar outflow consists of a high-velocity central jet surrounded by a low-velocity component. The low-velocity flows are the rotating hollow tubes ejected from the peripheral part of the disk with a diameter ∼Ø1 = 2.2 pc and from the region Ø2 = 1 pc. The high-velocity jet with a diameter Ø3 = 0.2 pc is ejected from the central part of the disk, while the remnant falls onto the forming central body. The ejection velocity of the high-velocity flow is v ⩾ 0.06c. At a distance up to ∼1 pc, the jet accelerates to an apparent velocity v ∼ 8c. Further out, uniform motion is observed within ∼2 pc following which deceleration occurs. The jet structure corresponding to a conical diverging helix with an increasing pitch is determined by gasdynamic instability. The counterjet structure is a mirror reflection of the nearby part of the jet. The brightness temperature of the fragment of the high-velocity flow at the exit from the counterjet nozzle is T b ≈ (1012−1013) K. The disk inclined at an angle of 60° to the plane of the sky shadows the jet ejector region. Ring currents observed in the tangential directions as parallel chains of components are excited in the rotating flows. The magnetic fields of the rotating bipolar outflow and the disk are aligned and oriented along the rotation axis. The translational motions of the jet and counterjet are parallel and antiparallel to the magnetic field, which determines their acceleration or deceleration. The quasar core is surrounded by a thermal plasma. The sizes of the HII region reach ∼30 pc. The electron density decreases with increasing distance from the center from N e ≈ 108 to ≈105 cm−3. The observed emission from the jet fragments at the exit from the nozzle is partially absorbed by the thermal plasma, is refracted with increasing distance—moves with an apparent superluminal velocity, and decelerates as it goes outside the HII region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Abramyan, Astrofizika 52, 136 (2009).

    Google Scholar 

  2. M. G. Abramyan and L. I. Matveenko, Astrofizika 55, 397 (2012).

    Google Scholar 

  3. H. D. Aller and M. F. Aller, Low Frequency Variability Exragalactic Radio Sources, Ed. by W. D. Cotton and S. R. Spangler (Publ. NRAO, Green Bank, 1982), p. 105.

  4. L. B. Bääth, A. E. E. Rogers, M. Inoue, et al., Astron. Astrophys. 257 (1992)

  5. J. A. Biretta, R. L. Moore, and M.H. Cohen, Astrophys. J. 308, 93 (1986).

    Article  ADS  Google Scholar 

  6. G. S. Bisnovatyi-Kogan, B. M. Komberg, and A. M. Fridman, Sov. Astron. 13, 369 (1969).

    ADS  Google Scholar 

  7. J. H. Bregman, A. E. Glassgold, P. J. Huggins, et al., Astroph. J. 301, 708 (1986).

    Article  ADS  Google Scholar 

  8. S. Britzen et al., Astron. Lett. 27, 1 (2001).

    Article  ADS  Google Scholar 

  9. S. Britzen, T. R. Krihbaum, R. G. Strom, et al., Astron. Astrophys. 444, 443 (2005).

    Article  ADS  Google Scholar 

  10. M. H. Cohen, K. I. Kellermann, D. B. Shaffer, et al., Nature 268, 405 (1977).

    Article  ADS  Google Scholar 

  11. V. L. Ginzburg, Theoretical Physics and Astrophysics (Nauka, Moscow, 1981; Pergamon, Oxford, 1979), rus. p. 211.

    Google Scholar 

  12. A. K. Gopal-Krishna, A. K. Singal, and S. Krishnamohan, Astron. Astrophys. 140, 19 (1984).

    ADS  Google Scholar 

  13. S. G. Jorstad, A. P. Marcher, M. L. Lister, et al., Astrophys. J. 130, 418 (2005).

    Google Scholar 

  14. K. I. Kellermann and I. I. K. Pauliny Toth, Astrophys. J. 155, L31 (1969).

    Article  ADS  Google Scholar 

  15. K. I. Kellermann, D. L. Jauncey, M. H. Cohen, et al., Astrophys. J. 169, 1 (1971).

    Article  ADS  Google Scholar 

  16. R. I. Kollgaard, J. F. C. Wardle, and D. H. Roberts, Astron. J. 97, 1550 (1989).

    Article  ADS  Google Scholar 

  17. V. I. Kostenko and L. I. Matveyenko, Sov. Astron. 12, 936 (1968).

    ADS  Google Scholar 

  18. P. P. Kronberg, R. V. Lovelase, G. Lapenta, and S. A. Colgate, Astrophys. J. Lett. 37, 483 (2011).

    Google Scholar 

  19. R. V. E. Lovelace, H. L. Berg, and Condopouloc, Astrophys. J. 379, 696 (1991).

    Article  ADS  Google Scholar 

  20. R. V. E. Lovelace and M. M. Romanova, Astrophys. J. 596, L159 (2003).

    Article  ADS  Google Scholar 

  21. F. Mantovani, R. Fanti, L. Gregorini, et al., Astron. Astrophys. 233, 535 (1990).

    ADS  Google Scholar 

  22. A. P. Marscher, CP856, Relativistic Jets, Ed. by P. A. Hughes and J. N. Bregman (Am. Inst. Phys., 2006).

  23. A. P. Marscher, S. G. Jorstad, V. M. Larionov, et al., Astrophys. J. 710, L126 (2010).

    Article  ADS  Google Scholar 

  24. L. I. Matveyenko, N. S. Kardashev, and G. B. Sholomitskii, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 8, 651 (1965).

    Google Scholar 

  25. L. I. Matveyenko, I. I. K. Pauliny-Toth, B. Sherwood, et al., Astron. Lett. 12, 25(59) (1986).

    Google Scholar 

  26. L. I. Matveyenko, D. A. Graham, I. I. K. Pauliny-Toth, et al., Astron. Lett. 18, 379 (1992).

    Google Scholar 

  27. L. I. Matveyenko, Astron. Lett. 19, 108 (1993).

    ADS  Google Scholar 

  28. L. I. Matveyenko, I. I. K. Pauliny-Toth, L. B. Bääth, et al., Astron. Astrophys. 312, 738 (1996)

    ADS  Google Scholar 

  29. L. I. Matveyenko, I. I. K. Pauliny-Toth, D. A. Graham, et al., Astron. Lett. 22, 14 (1996).

    ADS  Google Scholar 

  30. L. I. Matveyenko and A. I. Witzel, Astron. Lett. 25, 555 (1999).

    ADS  Google Scholar 

  31. L. I. Matveyenko, D. A. Graham, and D. A. Zensus, Astron. Rep. 49, 259 (2005).

    Article  ADS  Google Scholar 

  32. L. I. Matveyenko, Astron. Not. 328, 411 (2007).

    ADS  Google Scholar 

  33. L. I. Matveyenko, S. S. Sivacon, S. V. Seleznev, et al., in Proceedings of the 10th European VLBI Network Symposium and EVN Users Meeting: VLBI and the New Generation of Radio Arrays, Manchester, UK, Sept. 20–24, 2010 (2010a).

    Google Scholar 

  34. L. I. Matveyenko, S. S. Sivacon, S. G. Erstadt, and A. P. Marsher, Astron. Lett. 36, 151 (2010).

    Article  ADS  Google Scholar 

  35. L. I. Matveyenko and S. V. Seleznev, Astron. Lett. 37, 154 (2011a).

    Article  ADS  Google Scholar 

  36. L. I. Matveyenko and S. V. Seleznev, Astron. Lett. 37, 515 (2011b).

    Article  ADS  Google Scholar 

  37. M. L. Meeks, Astrophysics, Part C: Radio Observations, V-12 (Academic Press, 1976), p. 253.

    Google Scholar 

  38. M. Miyoshi, J. Moran, J. Herrnstein, et al., Nature 373, 127 (1955).

    Article  ADS  Google Scholar 

  39. H. Netzer, Astrophysical Jets and Their Engines, Ed. by W. Kundt (Reidel, Dordrecht, 1987), p. 103.

  40. L. M. Ozernoi and A. D. Chernin, Sov. Astron. 11, 907 (1967).

    ADS  Google Scholar 

  41. L. Padrielli, R. Fanti, A. Ficarra, et al., IAU Symp., No. 129, 297 (1987).

    Google Scholar 

  42. L. Padrielli, Lowq Frequensy Variability of Extragalactic Radio Sources, Ed. by W. D. Cotton and S. R. Spangler (Publ. Nat. Radio Astro. Observ., Green Bank, 1982), p. 1.

  43. J. L. Pawsey and R. N. Bracewell, Radioastronomy (Clarendon, Oxford, 1955; Inostr. Liter., Moscow, 1955), p. 96.

    Google Scholar 

  44. I. I. Pronik, Sov. Astron. 16, 628 (1987).

    ADS  Google Scholar 

  45. F. T. Rantakyro, L. B. Baath, I. I. K. Pauliny-Toth, et al., Astron. Astrophys. 259, 8 (1992).

    ADS  Google Scholar 

  46. F. T. Rantakyro, L. B. Baath, and L. I. Matveyenko, Astron. Astrophys. 293, 44 (1995).

    ADS  Google Scholar 

  47. E. Ros, J. A. Zensus, and A. P. Lobanov, Astron. Astrophys. 354, 55 (2000).

    ADS  Google Scholar 

  48. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 278, 337 (1993).

    Google Scholar 

  49. S. R. Spangler and W. D. Cotton, Astron. J. 86, 730 (1981).

    Article  ADS  Google Scholar 

  50. S. R. Spangler, R. Fanti, Gregorini, and L. Padrielli, Astron. Astrophys. 209, 315 (1989).

    ADS  Google Scholar 

  51. S. C. Unwin, M. H. Cohen, N. J. Pearson, et al., Astrophys. J. 271, 536 (1983).

    Article  ADS  Google Scholar 

  52. G. L. Versker and K. I. Kellermann, Galactic and Extragalactic Radio Astronomy (Phys. Today 29, 1 (1976); Mir, Moscow, 1976).

    ADS  Google Scholar 

  53. J. A. Zensus, M. H. Cohen, and S. C. Unwin, Astrophys. J. 443, 35 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © L.I. Matveyenko, S.S. Sivakon’, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 8, pp. 547–579.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveyenko, L.I., Sivakon’, S.S. Kinematics of the active region of the quasar 3C 345. Astron. Lett. 39, 481–512 (2013). https://doi.org/10.1134/S1063773713080070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713080070

Keywords

Navigation