Skip to main content
Log in

Baroclinic instability in differentially rotating stars

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

A linear analysis of baroclinic instability in a stellar radiation zone with radial differential rotation is performed. The instability sets in at a very small rotation inhomogeneity, ΔΩ ∼ 10−3Ω. There are two families of unstable disturbances corresponding to Rossby waves and internal gravity waves. The instability is dynamical: its growth time is several thousand rotation periods but is short compared to the stellar evolution time. A decrease in thermal conductivity amplifies the instability. Unstable disturbances possess kinetic helicity. Magnetic field generation by the turbulence resulting from the instability is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Acheson, Philos. Trans. R. Soc. London A 289, 459 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  2. E. Alecian, C. Neiner, S. Mathis, et al., Astron. Astrophys. 549, L8 (2013).

    Article  ADS  Google Scholar 

  3. S. A. Barnes, Astrophys. J. 586, 464 (2003).

    Article  ADS  Google Scholar 

  4. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961).

    MATH  Google Scholar 

  5. P. Charbonneau, M. Dikpati, and P. A. Gilman, Astrophys. J. 526, 523 (1999).

    Article  ADS  Google Scholar 

  6. C. Charbonnel and S. Talon, Science 309, 2189 (2005).

    Article  ADS  Google Scholar 

  7. P. A. Denissenkov, M. Pinsonneault, D. M. Terndrup, and G. Newsham, Astrophys. J. 716, 1269 (2010).

    Article  ADS  Google Scholar 

  8. R. H. Dicke, Ann. Rev. Astron. Astrophys. 8, 297 (1970).

    Article  ADS  Google Scholar 

  9. A. E. Dudorov, V. N. Krivodubskii, T. V. Ruzmaikina, and A. A. Ruzmaikin, Sov. Astron. 33, 420 (1989).

    ADS  Google Scholar 

  10. P. A. Gilman, M. Dikpati, and M. S. Miesch, Astrophys. J. Suppl. Ser. 170, 203 (2007).

    Article  ADS  Google Scholar 

  11. P. Goldreich and G. Schubert, Astrophys. J. 150, 571 (1967).

    Article  ADS  Google Scholar 

  12. L. W. Hartmann and R. W. Noyes, Ann. Rev. Astron. Astrophys. 25, 271 (1987).

    Article  ADS  Google Scholar 

  13. R. Kippenhahn and A. Weigert, Stellar Structure and Evolution (Springer, Berlin, 1990).

    Book  MATH  Google Scholar 

  14. L. L. Kitchatinov, Astron. Rep. 50, 944 (2006).

    Article  ADS  Google Scholar 

  15. L. L. Kitchatinov, Astron. Rep. 52, 247 (2008).

    Article  ADS  Google Scholar 

  16. L. L. Kitchatinov, Astron. Rep. 54, 1 (2010).

    Article  ADS  Google Scholar 

  17. L. L. Kitchatinov and A. Brandenburg, Astron. Nachr. 333, 230 (2012).

    Article  ADS  Google Scholar 

  18. L. L. Kitchatinov and G. Rüdiger, Astron. Astrophys. 478, 1 (2008).

    Article  ADS  MATH  Google Scholar 

  19. L. L. Kitchatinov, M. Jardine, and A. Collier Cameron, Astron. Astrophys. 374, 250 (2001).

    Article  ADS  Google Scholar 

  20. H. Klahr and P. Bodenhaimer, Astrophys. J. 582, 869 (2003).

    Article  ADS  Google Scholar 

  21. D. G. Korycansky, Astrophys. J. 381, 515 (1991).

    Article  ADS  Google Scholar 

  22. A. I. Lebedinskii, Astron. Zh. 18, 10 (1941).

    Google Scholar 

  23. M. Pinsonneault, Ann. Rev. Astron. Astrophys. 35, 557 (1997).

    Article  ADS  Google Scholar 

  24. G. Rüdiger, L. L. Kitchatinov, and D. Elsther, Mon. Not. R. Astron. Soc. 425, 2267 (2012).

    Article  ADS  Google Scholar 

  25. D. Shalybkov and G. Rüdiger, Astron. Astrophys. 438, 411 (2005).

    Article  ADS  MATH  Google Scholar 

  26. H. Shibahashi, Publ. Astron. Soc. Jpn. 32, 341 (1980).

    ADS  Google Scholar 

  27. J. Shou, H. M. Antia, S. Basu, et al., Astrophys. J. 505, 390 (1998).

    Article  ADS  Google Scholar 

  28. A. Skumanich, Astrophys. J. 171, 565 (1972).

    Article  ADS  Google Scholar 

  29. H. C. Spruit, The Internal Solar Angular Velocity, Ed. by B. R. Durney and S. Sofia (Reidel, Dordrecht, 1987), p. 185.

  30. H. C. Spruit and E. Knobloch, Astron. Astrophys. 132, 89 (1984).

    ADS  Google Scholar 

  31. J.-L. Tassoul, Theory of Rotating Stars (Princeton Univ. Press, Princeton, 1978; Mir, Moscow, 1982).

    Google Scholar 

  32. M. Tassoul and J.-L. Tassoul, Astrophys. J. 271, 315 (1983).

    Article  ADS  Google Scholar 

  33. S. I. Vainshtein, Ya. B. Zeldovich, and A. A. Ruzmaikin, Turbulent Dynamo in Astrophysics (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Kitchatinov.

Additional information

Original Russian Text © L.L. Kitchatinov, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 8, pp. 631–640.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitchatinov, L.L. Baroclinic instability in differentially rotating stars. Astron. Lett. 39, 561–569 (2013). https://doi.org/10.1134/S1063773713080045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773713080045

Keywords

Navigation