Skip to main content
Log in

Anisotropic illumination of a circumbinary disk in the presence of a low-mass companion

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The model of a young star with a protoplanetary disk and a low-mass companion (q ≤ 0.1) moving in a circular orbit inclined to the disk plane is considered. Hydrodynamic models of such a system have been calculated by the SPH method. The perturbations in the disk caused by the orbital motion of the companion are shown to lead to a strong dependence of the disk illumination conditions on azimuth (because of extinction variations between the star and the disk surface) and, as a result, to the appearance of a large-scale asymmetry in the disk images. Calculations show that the dependence of the disk illumination on azimuth is stronger in the central part of the disk than on the periphery. The bright and dark (shadow) regions are located asymmetrically relative to the line of nodes. The sizes of these regions and their positions on the disk depend on model parameters and orbital phase. During the orbital motion, the bright and dark regions do not follow the companion but execute small-amplitude oscillations relative to some direction. The model properties described above open up new possibilities for detecting low-mass companions in the vicinity of young stars. Stars with protoplanetary disks seen face-on or at low inclinations i are best suited for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Artymowicz and S. H. Lubow, Astrophys. J. 467, L77 (1996).

    Article  ADS  Google Scholar 

  2. J. C. Augereau, A. M. Lagrange, D. Mouillet, et al., Astron. Astrophys. 348, 557 (1999).

    ADS  Google Scholar 

  3. M. R. Bate, G. Lodato, and J. E. Pringle, Mon. Not. R. Astron. Soc., 401, 1505 (2010).

    Article  ADS  Google Scholar 

  4. D. J. A. Brown, A. Collier Cameron, D. R. Anderson, et al.,Mon. Not. R. Astron. Soc. Tmp. 292 (2012)

  5. C. J. Burrows, J. E. Krist, K. R. Stapelfeldt, and WFPC2 Investigation Definition Team, Bull. Am. Astron. Soc. 27, 1329 (1995).

    ADS  Google Scholar 

  6. S. J. Burrows, K. R. Stapelfeldt, A.M. Watson, et al., Astrophys. J. 473, 437 (1996).

    Article  ADS  Google Scholar 

  7. E. Chapillon, S. Guilloteau, A. Dutrey, et al., Astron. Astrophys. 488, 565 (2008).

    Article  ADS  Google Scholar 

  8. G. Chauvin, A.-M. Lagrange, H. Beust, et al., arXiv1202.2655C (2012).

  9. M. Clampin, J. E. Krist, D. R. Ardila, et al., Astron. J. 126, 385 (2003).

    Article  ADS  Google Scholar 

  10. M. Cohen, Mon. Not. R. Astron. Soc. 173, 279 (1975).

    ADS  Google Scholar 

  11. T. V. Demidova, V. P. Grinin, and N. Ya. Sotnikova, Astron. Lett. 36, 498 (2010).

    Article  ADS  Google Scholar 

  12. T. V. Demidova, N. Ya. Sotnikova, and V. P. Grinin, Astron. Lett. 36, 422 (2010).

    Article  ADS  Google Scholar 

  13. J. A. Eisner, B. F. Lane, L. A. Hillenbrand, et al., Astrophys. J. 613, 1049 (2004).

    Article  ADS  Google Scholar 

  14. A.M. Fateeva, D. V. Bisikalo, P. V. Kaygorodov, et al., Astrophys. Space Sci. 335, 125 (2011).

    Article  ADS  Google Scholar 

  15. S. A. Grady, D. Devine, B. Woodgate, et al., Astrophys. J. 544, 895 (2000).

    Article  ADS  Google Scholar 

  16. V. P. Grinin, N. N. Kiselev, G. P. Chernova, et al., Astrophys. Space Sci. 186, 283 (1991).

    Article  ADS  Google Scholar 

  17. V. P. Grinin, T. V. Demidova, and N. Ya. Sotnikova, Astron. Lett. 36, 808 (2010).

    Article  ADS  Google Scholar 

  18. T. Hanawa, Y. Ochi, and K. Ando, Astrophys. J. 708, 485 (2010).

    Article  ADS  Google Scholar 

  19. G. Hébrard, F. Bouchy, F. Pont, et al., in Transiting Planets, Ed. by F. Pont, D. Sasselov, and M. J. Holman (Cambridge: Cambridge Univ. Press, 2009), p. 508.

    Google Scholar 

  20. P. V. Kaigorodov, D. V. Bisikalo, A. M. Fateeva, et al., Astron. Rep. 54, 1078 (2010).

    Article  ADS  Google Scholar 

  21. S. J. Kenyon and L. Hartmann, Astrophys. J. 323, 714 (1987).

    Article  ADS  Google Scholar 

  22. J. E. Krist, K. R. Stapelfeldt, F. Ménard, et al., Astrophys. J. 538, 793 (2000).

    Article  ADS  Google Scholar 

  23. M.-A. Lagrange, D. Gratadour, G. Chauvin, et al., Astron. Astrophys. 493, L21 (2009).

    Article  ADS  Google Scholar 

  24. L. D. Larwood and J. C. P. Papaloizou, Mon. Not. R. Astron. Soc. 285, 288 (1997).

    ADS  Google Scholar 

  25. M. J. McCaughrean and C. R. O’Dell, Astron. J. 111, 1977 (1996).

    Article  ADS  Google Scholar 

  26. M. J. McCaughrean, K. R. Stapelfeldt, and L. M. Close, in Protostars and Protoplanets IV, Ed. by V. Mannings, A. P. Boss, and S. S. Russell (Univ. of Arizona Press, Tucson, 2000), p. 485.

    Google Scholar 

  27. V. Mendoza and E. Eugenio, Astrophys. J. 143, 1010 (1966).

    Article  ADS  Google Scholar 

  28. D. Mouillet, J. D. Larwood, J. C. B. Papaloizou, et al., Mon. Not. R. Astron. Soc. 292, 896 (1997).

    ADS  Google Scholar 

  29. N. Narita, T. Hirano, B. Sato, et al., Publ. Astron. Soc. Jpn. 63, 67 (2011).

    ADS  Google Scholar 

  30. A. Natta and B. Whitney, Astron. Astrophys. 364, 633 (2000).

    ADS  Google Scholar 

  31. A. Natta, V. P. Grinin, and V. Mannings, in Protostars and Planets IV, Ed. by V. Mannings, A. P. Boss, and S. S. Russell (Tucson: Univ. of Arizona Press, 2000), p. 559.

  32. F. Pont, M. Endl, and W. D. Cochran, Mon. Not. R. Astron. Soc. 402, L1 (2010).

    Article  ADS  Google Scholar 

  33. A. N. Rostopchina, Astron. Rep. 43, 113 (1999).

    ADS  Google Scholar 

  34. N. Ya. Sotnikova, Astrofizika 39, 259 (1996).

    Google Scholar 

  35. N. Ya. Sotnikova and V. P. Grinin, Astron. Lett. 33, 594 (2007).

    Article  ADS  Google Scholar 

  36. K. R. Stapelfeldt, J. E. Krist, F. Ménard, et al., Astrophys. J. 502, L65 (1998).

    Article  ADS  Google Scholar 

  37. A. Yu. Sytov, P. V. Kaigorodov, A. M. Fateeva, et al., Astron. Rep. 55, 793 (2011).

    Article  ADS  Google Scholar 

  38. L. V. Tambovtseva, V. P. Grinin, and G. Weigelt, Astron. Astrophys. 448, 633 (2006).

    Article  ADS  Google Scholar 

  39. M. de Val-Borro, G. F. Gahm, H. C. Stempels, et al., Mon. Not. R. Astron. Soc. 413, 2679 (2011).

    Article  ADS  Google Scholar 

  40. F. J. Vrba, A. E. Rydgren, P. F. Chugainov, et al., Astrophys. J. 306, 199 (1986).

    Article  ADS  Google Scholar 

  41. J. Winn, J. A. Johnson, D. Fabrycky, et al., Astrophys. J. 700, 302 (2009a).

    Article  ADS  Google Scholar 

  42. J. Winn, A. W. Howard, J. A. Johnson, et al., Astrophys. J. 703, 2091 (2009b).

    Article  ADS  Google Scholar 

  43. J. P. Wisniewski, M. Clampin, C. A. Grady, et al., Astrophys. J. 682, 548 (2008).

    Article  ADS  Google Scholar 

  44. K. Wood and B. Whitney, Astrophys. J. Lett. 506, L43 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Demidova.

Additional information

Original Russian Text © T.V. Demidova, V.P. Grinin, N.Ya. Sotnikova, 2013, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2013, Vol. 39, No. 1, pp. 29–40.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demidova, T.V., Grinin, V.P. & Sotnikova, N.Y. Anisotropic illumination of a circumbinary disk in the presence of a low-mass companion. Astron. Lett. 39, 26–37 (2013). https://doi.org/10.1134/S106377371212002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377371212002X

Keywords

Navigation