Skip to main content
Log in

Mechanism of thermonuclear burning propagation in a helium layer on a neutron star surface: A simplified adiabatic model

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Some thermonuclear X-ray bursters exhibit a high-frequency (about 300 Hz or more) brightness modulation at the rising phase of some bursts. These oscillations are explained by inhomogeneous heating of the surface layer on a rapidly rotating neutron star due to the finite propagation speed of thermonuclear burning. We suggest and substantiate a mechanism of this propagation that is consistent with experimental data. Initially, thermonuclear ignition occurs in a small region of the neutron star surface layer. The burning products rapidly rise and spread in the upper atmospheric layers due to turbulent convection. The accumulation of additional matter leads to matter compression and ignition at the bottom of the layer. This determines the propagation of the burning front. To substantiate this mechanism, we use the simplifying assumptions about a helium composition of the neutron star atmosphere and its initial adiabatic structure with a density of 1.75 × 108 g cm−3 at the bottom. 2D numerical simulations have been performed using a modified particle method in the adiabatic approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Bildsten, Astrophys. J. 438, 852 (1995).

    Article  ADS  Google Scholar 

  2. W. A. Fowler and G. R. Caughlan, At. Data Nucl. Data Tables 40, 283 (1988).

    Article  ADS  Google Scholar 

  3. B. A. Fryxell and S. E. Woosely, Astrophys. J. 258, 733 (1982a).

    Article  ADS  Google Scholar 

  4. B. A. Fryxell and S. E. Woosely, Astrophys. J. 261, 332 (1982b).

    Article  ADS  Google Scholar 

  5. D. K. Galloway, M. P. Muno, J. M. Hartman, et al., Astrophys. J. Suppl. Ser. 179, 360 (2008).

    Article  ADS  Google Scholar 

  6. C. J. Hansen and H. M. van Horn, Astrophys. J. 195, 735 (1975).

    Article  ADS  Google Scholar 

  7. F. H. Harlow, Methods Comput. Phys. 3, 319 (1964).

    Google Scholar 

  8. N. A. Inogamov and R. A. Syunyaev, Astron. Lett. 25, 269 (1999).

    ADS  Google Scholar 

  9. P. C. Joss, Astrophys. J. Lett. 225, L123 (1978).

    Article  ADS  Google Scholar 

  10. W. H. G. Lewin, J. van Paradijs, and R. E. Taam, Space Sci. Rev. 62, 223 (1993).

    Article  ADS  Google Scholar 

  11. I. A. Litvinenko and O. N. Pavlenko, Vopr. At. Nauki Tekh., Ser. Mat. Model. Fiz. Protsessov 4, 61 (2003).

    Google Scholar 

  12. T. Nozakura, S. Ikeuchi, and M. Y. Fujimoto, Astrophys. J. 286, 221 (1984).

    Article  ADS  Google Scholar 

  13. R. Pophamand R. A. Sunyaev, Astrophys. J. 547, 355 (2001).

    Article  ADS  Google Scholar 

  14. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  15. V. A. Simonenko, D. A. Gryaznykh, N. G. Karlykhanov, et al., Astron. Lett. 33, 80 (2007).

    Article  ADS  Google Scholar 

  16. D. A. Smith, E. H. Morgan, and H. Bradt, Astrophys. J. Lett. 479, L137 (1997).

    Article  ADS  Google Scholar 

  17. T. Strohmayer and L. Bildsten, Compact Stellar X-ray Sources, Cambridge Astrophys. Ser., Vol. 39, Ed. by W. Lewin and M. van der Klis (Cambridge Univ. Press, Cambridge, 2006), p. 113; arxiv.org: astro-ph/0301544.

    Chapter  Google Scholar 

  18. T. E. Strohmayer, W. Zhang, J. H. Swank, et al., Astrophys. J. Lett. 469, L9 (1996).

    Article  ADS  Google Scholar 

  19. T. E. Strohmayer, W. Zhang, and J. H. Swank, Astrophys. J. Lett. 487, L77 (1997).

    Article  ADS  Google Scholar 

  20. F. X. Timmes and J. C. Niemeyer, Astrophys. J. 537, 993 (2000).

    Article  ADS  Google Scholar 

  21. M. Zingale, F. X. Timmes, B. Fryxell, et al., Astrophys. J. Suppl. Ser. 133, 195 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gryaznykh.

Additional information

Original Russian Text © V.A. Simonenko, D.A. Gryaznykh, I.A. Litvinenko, V.A. Lykov, A.N. Shushlebin, 2012, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2012, Vol. 38, No. 4, pp. 263–270.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonenko, V.A., Gryaznykh, D.A., Litvinenko, I.A. et al. Mechanism of thermonuclear burning propagation in a helium layer on a neutron star surface: A simplified adiabatic model. Astron. Lett. 38, 231–237 (2012). https://doi.org/10.1134/S1063773712040056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773712040056

Keywords

Navigation