Skip to main content
Log in

On the characteristics of tidal structures of interacting galaxies

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We present the results of our analysis of the geometrical tidal tail characteristics for nearby and distant interacting galaxies. The sample includes more than two hundred nearby galaxies and about seven hundred distant ones. The distant galaxies have been selected in several deep fields of the Hubble Space Telescope (HDF-N, HDF-S, HUDF, GOODS, GEMS) and they are at mean redshift 〈z〉 = 0.65. We analyze the distributions of lengths and thicknesses for the tidal structures and show that the tails in distant galaxies appear shorter than those in nearby ones. This effect can be partly attributed to observational selection, but, on the other hand, it may result from the general evolution of the sizes of spiral galaxies with z. The positions of interacting galaxies on the galaxy luminosity (L)-tidal tail length (l) plane are shown to be explained by a simple geometrical model, with the upper envelope of the observed distribution being \(l \propto \sqrt L\). We have solved the problem on the relationship between the observed distribution of tail flatting and the tail length in angular measure by assuming the tidal tails to be arcs of circumferences visible at arbitrary angles to the line of sight. We conclude that the angular length of the tidal tails visually distinguished in nearby and distant galaxies, on average, exceeds 180°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Agekyan, Probability Theory for Astronomers and Physicists (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  2. I. Balestra, V. Mainieri, P. Popesso, et al., Astron. Astrophys. 512, 12 (2010).

    Article  ADS  Google Scholar 

  3. J. Barnes and L. Hernquist, Nature 360, 715 (1992).

    Article  ADS  Google Scholar 

  4. C. R. Bridge, R. G. Carlberg, and M. Sullivan, Astrophys. J. 709, 1067 (2010).

    Article  ADS  Google Scholar 

  5. D. Coe, N. Benitez, S. F. Sanchez, et al., Astron. J. 132, 926 (2006).

    Article  ADS  Google Scholar 

  6. J. Dubinski, J. Ch. Mihos, and L. Hernquist, Astrophys. J. 462, 576 (1996).

    Article  ADS  Google Scholar 

  7. J. Dubinski, J. Ch. Mihos, and L. Hernquist, Astrophys. J. 526, 607 (1999).

    Article  ADS  Google Scholar 

  8. P.-A. Duc, arXiv:1101.4834v2 (2011).

  9. A. A. Dutton, F. C. van den Bosch, S. M. Faber, et al., Mon. Not. R. Astron. Soc. 410, 1660 (2011).

    ADS  Google Scholar 

  10. B. G. Elmegreen, M. Kaufman, and M. Thomasson, Astrophys. J. 412, 90 (1993).

    Article  ADS  Google Scholar 

  11. D. M. Elmegreen, B. G. Elmegreen, Th. Ferguson, and B. Mullan, Astrophys. J. 663, 734 (2007).

    Article  ADS  Google Scholar 

  12. A. Fernandez-Soto, K. M. Lanzetta, and A. Yahil, Astrophys. J. 513, 34 (1999).

    Article  ADS  Google Scholar 

  13. K. Glazebrook, A. Verma, B. Boyle, et al., Astron. J. 131, 2383 (2006).

    Article  ADS  Google Scholar 

  14. I. D. Karachentsev, Binary Galaxies (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  15. J. Ch. Mihos, Astrophys. J. 438, L75 (1995).

    Article  ADS  Google Scholar 

  16. J. Ch. Mihos, J. Dubinski, and L. Hernquist, Astrophys. J. 494, 183 (1998).

    Article  ADS  Google Scholar 

  17. Ya. Kh. Mokhamed and V. P. Reshetnikov, Astrofizika 54, 181 (2011).

    Google Scholar 

  18. P. B. Nair and R. G. Abraham, Astrophys. J. Suppl. Ser. 186, 427 (2010).

    Article  ADS  Google Scholar 

  19. V. P. Reshetnikov, Astron. Lett. 24, 153 (1998).

    ADS  Google Scholar 

  20. V. P. Reshetnikov, Astron. Astrophys. 353, 92 (2000).

    ADS  Google Scholar 

  21. V. P. Reshetnikov and N. Ya. Sotnikova, Astron. Astrophys. Trans. 20, 111 (2001).

    Article  ADS  Google Scholar 

  22. M. Sawicki and G. Mallen-Ornelas, Astron. J. 126, 1208 (2003).

    Article  ADS  Google Scholar 

  23. J. M. Schombert, J. F. Wallin, and C. Struck-Marcell, Astron. J. 99, 497 (1990).

    Article  ADS  Google Scholar 

  24. N. Ya. Sotnikova and V. P. Reshetnikov, Izv. RAN 62, 1757 (1998a).

    Google Scholar 

  25. N. Ya. Sotnikova and V. P. Reshetnikov, Astron. Lett. 24, 73 (1998b).

    ADS  Google Scholar 

  26. V. Springel and S. D. M. White, Mon. Not. R. Astron. Soc. 307, 162 (1999).

    Article  ADS  Google Scholar 

  27. A. Toomre and J. Toomre, Astrophys. J. 178, 623 (1972).

    Article  ADS  Google Scholar 

  28. R. E. Williams, S. Baum, L. E. Bergeron, et al., Astron. J. 120, 2735 (2000).

    Article  ADS  Google Scholar 

  29. C. Wolf, K. Meisenheimer, M. Kleinheinrich, et al., Astron. Astrophys. 421, 913 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Reshetnikov.

Additional information

Original Russian Text © Y.H. Mohamed, V.P. Reshetnikov, N.Ya. Sotnikova, 2011, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2011, Vol. 37, No. 10, pp. 730–739.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohamed, Y.H., Reshetnikov, V.P. & Sotnikova, N.Y. On the characteristics of tidal structures of interacting galaxies. Astron. Lett. 37, 670–678 (2011). https://doi.org/10.1134/S1063773711100045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773711100045

Keywords

Navigation