Skip to main content
Log in

Numerical simulation of unstable two-dimensional motions of a circumstellar shell

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The growth of two-dimensional axisymmetric perturbations in the motion of a neutral shell formed in the interstellar medium when an ionization-shock front exits at the surface of a cloud is simulated numerically. The perturbations are assumed to emerge when the shock ahead of the ionization front reaches the cloud boundary. For long-wavelength perturbations, the accumulation of mass has been found to take place in radially oriented condensations in the shape of a rod pointed toward the star and widened at the opposite end as a result of instability. The shell fragmentation is accompanied by supersonic spouting of a hot plasma into a low-density medium. Flow nonstationarity is shown to affect significantly the gas density and velocity distributions both inside and in the immediate vicinity of the condensation. As one recedes from the ionization front, the density of charged particles changes only slightly, which is inconsistent with the power law of density decrease with increasing distance from the condensation center commonly used in interpreting observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. I. Axford, Astrophys. J. 140, 112 (1964).

    Article  ADS  Google Scholar 

  2. V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of Space Plasma (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  3. P. Bodenheimer, G. Tenorio-Tagle, and H. W. Yorke, Astrophys. J. 233, 85 (1979).

    Article  ADS  Google Scholar 

  4. E. R. Capriotti, Astrophys. J. 179, 495 (1973).

    Article  ADS  Google Scholar 

  5. E. R. Capriotti and A. D. Kendall, Astrophys. J. 642, 923 (2006).

    Article  ADS  Google Scholar 

  6. G. Garcia-Segura and J. Franco, Astrophys. J. 469, 171 (1996).

    Article  ADS  Google Scholar 

  7. J. L. Giuliani, Astrophys. J. 233, 280 (1979).

    Article  ADS  Google Scholar 

  8. S. A. Kaplan and S. B. Pikel’ner, Interstellar Medium (Fizmatgiz, Moscow, 1963; Harvard Univ. Press, Cambridge, MA, 1982).

    Google Scholar 

  9. K. Kifonidis, T. Plewa, H.-Th. Janka, et al., Astron. Astrophys. 408, 621 (2003).

    Article  ADS  Google Scholar 

  10. G. Yu. Kotova and K. V. Krasnobaev, Zh. Khim. Fiz. 27, 81 (2008) [Russ. J. Phys. Chem. B 2, 402 (2008)].

    Google Scholar 

  11. G. Yu. Kotova and K. V. Krasnobaev, Pis’ma Astron. Zh. 35, 189 (2009) [Astron. Lett. 35, 167 (2009)].

    Google Scholar 

  12. G. Yu. Kotova, K. V. Krasnobaev, and R. R. Tagirova, Problems of Modern Mechanics: to the 85th Birthday of Acad. G.G. Chernyi, Ed. by A. A. Barmina (Mosc. Gos. Univ., Omega-L, Moscow, 2008), p. 190 [in Russian].

    Google Scholar 

  13. K.V. Krasnobaev, Dokl. Akad. Nauk SSSR 196, 1291 (1971) [Sov. Phys. Dokl. 16, 92 (1971)].

    Google Scholar 

  14. K. V. Krasnobaev, Pis’ma Astron. Zh. 27, 112 (2001) [Astron. Lett. 27, 91 (2001)].

    Google Scholar 

  15. K. V. Krasnobaev, Pis’ma Astron. Zh. 30, 500 (2004) [Astron. Lett. 30, 451 (2004)].

    Google Scholar 

  16. K. V. Krasnobaev and R. R. Tagirova, Izv. RAN, Mekhan. Zhidk. Gaza 5, 161 (2008).

    MathSciNet  Google Scholar 

  17. A. Mizuta, J.O. Kane, M.W. Pound, et al., Astrophys. J. 621, 803 (2005).

    Article  ADS  Google Scholar 

  18. D. Osterbrock, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd ed. (Univ. Sci. Book, California, 2006).

    Google Scholar 

  19. S. R. Pottasch, Bull. Astron. Ist. Netherlands 13, 77 (1956).

    ADS  Google Scholar 

  20. S. R. Pottasch, Bull. Astron. Ist. Netherlands 14, 482 (1958).

    Google Scholar 

  21. S. Pottasch, Planetary Nebulae (Reidel, Dordrecht, 1984; Mir, Moscow, 1987).

    Google Scholar 

  22. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  23. G. Tenorio-Tagle, Astron. Astrophys. 71, 59 (1979).

    ADS  Google Scholar 

  24. G. Tenorio-Tagle, M. Beltrametti, P. Bodenheimer, et al., Astron. Astrophys. 112, 104 (1982).

    ADS  Google Scholar 

  25. G. Tenorio-Tagle, H. W. York, and P. Bodenheimer, Astron. Astrophys. 71, 59 (1979).

    ADS  Google Scholar 

  26. P. O. Vandervoort, Astrophys. J. 135, 212 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  27. G. L. Welter, Astrophys. J. 240, 514 (1980).

    Article  ADS  Google Scholar 

  28. D. Whalen and M. L. Norman, Astrophys. J. 673, 664 (2008).

    Article  ADS  Google Scholar 

  29. R. J. R. Williams, Mon. Not. R. Astron. Soc. 310, 789 (1999).

    Article  ADS  Google Scholar 

  30. S. I. Zonenko and G. G. Chernyi, Dokl. Akad. Nauk 390, 46 (2003) [Dokl. Phys. 48, 239 (2003)].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Kotova.

Additional information

Original Russian Text © G.Yu. Kotova, K.V. Krasnobaev, 2010, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2010, Vol. 36, No. 7, pp. 506–516.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotova, G.Y., Krasnobaev, K.V. Numerical simulation of unstable two-dimensional motions of a circumstellar shell. Astron. Lett. 36, 479–489 (2010). https://doi.org/10.1134/S1063773710070030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773710070030

Key words

Navigation