The r-Process in the region of transuranium elements and the contribution of fission products to the nucleosynthesis of nuclei with A ≤ 130

Abstract

We discuss the influence of nuclear masses and mass distributions of fission products on the formation of heavy elements at the final stages of the r-process recycled through fission on long duration timescales. The fission recycling is of great importance in an environment with a high density of free neutrons (e.g., in neutron star merger scenarios), when the r-process duration is long enough for most of the seed nuclei to be transformed into actinoids. The fission products of transuranium elements are again drawn into the r-process to produce the abundance curve beyond the iron peak. In this case, to explain the abundances of the A ∼ 130 peak elements, not only the nuclear masses, fission barriers, and reaction rates, but also the fission product mass distribution must be predicted. Our r-process calculations using new nuclear masses and fission barriers and reaction rates based on them have shown that the simple two-fission-fragment model used previously in r-process calculations cannot describe adequately the position of the second peak in the observed abundance curve. We show that agreement between calculations and observations can be achieved only when we properly consider the mass distribution of fission products by taking into account the emission of instantaneous fission neutrons.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J. Benlliure, A. Grewe, M. de Jong, et al., Nucl. Phys. A 628, 458 (1998).

    ADS  Article  Google Scholar 

  2. 2.

    O. V. Bespalova, I. N. Boboshin, V. V. Varlamov, et al., Yad. Fiz. 68, 216 (2005) [Phys. At. Nucl. 68, 191 (2005)].

    Google Scholar 

  3. 3.

    G. R. Burbidge, E. M. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    ADS  Article  Google Scholar 

  4. 4.

    M. B. Chadwick, P. Obložinský, M. Herman, et al., Nucl. Data Sheets 107, 2931 (2006).

    ADS  Article  Google Scholar 

  5. 5.

    J. J. Cowan, F.-K. Thielemann, and J. W. Truran, Phys. Rep. 208, 267 (1991).

    ADS  Article  Google Scholar 

  6. 6.

    J. J. Cowan, A. McWilliam, C. Sneden, and D. L. Burris, Astrophys. J. 480, 246 (1997).

    ADS  Article  Google Scholar 

  7. 7.

    R. I. Epstein, S. A. Colgate, and W. C. Haxton, Phys. Rev. Lett. 61, 2038 (1988).

    Google Scholar 

  8. 8.

    C. Freiburghaus, S. Rosswog, and F.-K. Thielemann, Astrophys. J. 525, L121 (1999a).

    ADS  Article  Google Scholar 

  9. 9.

    C. Freiburghaus, J.-F. Rembges, T. Rauscher, et al., Astrophys. J. 516, 381 (1999b).

    ADS  Article  Google Scholar 

  10. 10.

    G. N. Goncharov, in Proceedings of the International Symposium on Nuclear Astrophysics “Nuclei in the Cosmos-IX,” 2006, Proc. Sci., PoS (NICIX), p. 156.

  11. 11.

    I. Halpern, Nuclear Fission (Fizmatgiz, Moscow, 1962) [in Russian].s

    Google Scholar 

  12. 12.

    E. R. Hilf, H. V. Groote, and K. Takahashi, in Proceedings of the 3rd International Conference on Nuclear far from Stability (CERN-76-13, 1976), p. 142.

  13. 13.

    W. Hillebrandt and F.-K. Thielemann, Astron. Astrophys. 58, 357 (1977).

    ADS  Google Scholar 

  14. 14.

    W. M. Howard and P. Möller, At. Data Nucl. Data Tables 25, 219 (1980).

    ADS  Article  Google Scholar 

  15. 15.

    M. G. Itkis, V. N. Okolovich, and G. N. Smirenkin, Nucl. Phys. A 502, 243 (1989).

    ADS  Article  Google Scholar 

  16. 16.

    F. Käppeler, H. Beer, and K. Wisshak, Rep. Progr. Phys. 52, 945 (1989).

    ADS  Article  Google Scholar 

  17. 17.

    A. Kelić, N. Zinner, E. Kolbe, et al., Phys. Lett. B 616, 48 (2005).

    ADS  Article  Google Scholar 

  18. 18.

    N. V. Kornilov, A. B. Kagalenko, B. M. Maslov, and Yu.V. Porodzinskij, Preprint IPPE-2978 (IPPE, Obninsk, 2003).

  19. 19.

    K.-L. Kratz, J.-P. Bitouzet, F.-K. Thielemann, et al., Astrophys. J. 403, 216 (1993).

    ADS  Article  Google Scholar 

  20. 20.

    B. D. Kuzminov, A. I. Sergachev, Khryachkov, et al., Neĭtron. Konstanty Parametry 2, 2 (2001).

    Google Scholar 

  21. 21.

    J. M. Lattimer and D. N. Schramm, Astrophys. J. 192, L145 (1974).

    ADS  Article  Google Scholar 

  22. 22.

    Yu. S. Lyutosansky, I. V. Panov, O. N. Sinyukova, et al., Yad. Fiz. 44, 66 (1986) [Sov. J. Nucl. Phys. 44, 43 (1986)].

    Google Scholar 

  23. 23.

    Yu. S. Lyutosansky, D. A. Ptitsyn, O. N. Sinyukova, et al., Yad. Fiz. 42, 215 (1985) [Sov. J. Nucl. Phys. 42, 136 (1985)].

    Google Scholar 

  24. 24.

    Yu. S. Lyutosansky, I. V. Panov, V. I. Lyashuk, Izv. Akad. NAuk SSSR, Ser. Fiz. 54, 2137 (1990).

    Google Scholar 

  25. 25.

    A. Mamdouh, J. M. Pearson, M. Rayet, and F. Tondeur, Nucl. Phys. A 679, 337 (2001).

    ADS  Article  Google Scholar 

  26. 26.

    G. J. Mathews and J. J. Cowan, Nature 345, 491 (1990).

    ADS  Article  Google Scholar 

  27. 27.

    P. Möller, J. R. Nix, and K.-L. Kratz, Atomic Data Nucl. Data Tables 66, 131 (1997).

    ADS  Article  Google Scholar 

  28. 28.

    W. D. Myers and W. J. Swiatecki, Phys. Rev. C 60, 014606 (1999).

    ADS  Article  Google Scholar 

  29. 29.

    S. Nagy, K. F. Flynn, J. E. Gindler, et al., Phys. Rev. C 17 (1978).

  30. 30.

    D. K. Nadyozhin and I. V. Panov, Pis’ma Astron. Zh. 33, 435 (2007) [Astron. Lett. 33, 385 (2007)].

    Google Scholar 

  31. 31.

    D. K. Nadyozhin, I. V. Panov, and S. I. Blinnikov, Astron. Astrophys. 335, 207 (1998).

    ADS  Google Scholar 

  32. 32.

    R. C. Nayk, Phys. Rev. C 60, 064305 (1999).

    ADS  Article  Google Scholar 

  33. 33.

    J. O. Newton, Fiz. Élem. Chastits At. Yadra 21, 822 (1990) [Phys. Part. Nucl. 21, 394 (1990)].

    Google Scholar 

  34. 34.

    I. V. Panov, Astron. Lett. 29, 163 (2003).

    ADS  Article  Google Scholar 

  35. 35.

    I. V. Panov, S. I. Blinnikov, and F.-K. Thielemann, Pis’ma Astron. Zh. 27, 248 (2001a) [Astron. Lett. 27, 239 (2001a)].

    Google Scholar 

  36. 36.

    I. V. Panov and V.M. Chechetkin, Pis’ma Astron. Zh. 28, 541 (2002) [Astron. Lett. 28, 476 (2002)].

    Google Scholar 

  37. 37.

    I. V. Panov, C. Freiburghaus, and F.-K. Thielemann, Nucl. Phys. A 688, 587 (2001b).

    ADS  Article  Google Scholar 

  38. 38.

    I. V. Panov, C. Freiburghaus, and F.-K. Thielemann, in Workshop on Nuclear Astrophysics, Ed. by W. Hillebrandt and E. Müller (MPA, Ringberg, Garching, 2000), p. 73.

    Google Scholar 

  39. 39.

    I. V. Panov, E. Kolbe, B. Pfeiffer, et al., Nucl. Phys. A 747, 633 (2005).

    ADS  Article  Google Scholar 

  40. 40.

    I. V. Panov and F.-K. Thielemann, Nucl. Phys. A 718, 647 (2003).

    ADS  Article  Google Scholar 

  41. 41.

    D. A. Ptitsyn and V. M. Chechetkin, Pis’ma Astron. Zh. 8, 600 (1982) [Astron. Lett. 8, 322 (1982)].

    ADS  Google Scholar 

  42. 42.

    Y.-Z. Qian, Astrophys. J. 563, L103 (2002).

    ADS  Article  Google Scholar 

  43. 43.

    Y.-Z. Qian and G. J. Wasserburg, Phys. Rep. 333, 77 (2000).

    ADS  Article  Google Scholar 

  44. 44.

    T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000).

    ADS  Article  Google Scholar 

  45. 45.

    P.A. Seeger, W. A. Fowler, and D.D. Clayton, Astrophys. J., Suppl. Ser. 11, 121 (1965).

    ADS  Article  Google Scholar 

  46. 46.

    J. Simmerer and C. Sneden, Astrophys. J. 617, 1091 (2004).

    ADS  Article  Google Scholar 

  47. 47.

    C. Sneden, J. J. Cowan, I. I. Ivans, et al., Astrophys. J. 533, 139 (2000).

    ADS  Article  Google Scholar 

  48. 48.

    E. M. D. Symbalisty and D. N. Schramm, Astrophys. Lett. 22, 143 (1982).

    ADS  Google Scholar 

  49. 49.

    F.-K. Thielemann, M. Arnould, and W. Truran, Advances in Nuclear Astrophysics, Ed. by E. Vangioni-Flam et al. (Frontiers, Gif sur Yvette, 1987), p. 525.

    Google Scholar 

  50. 50.

    J.W. Truran and J. J. Cowan, Workshop on Nuclear Astrophysics, Ed. by W. Hillebrandt and E. Müller (MPA, Ringberg, Garching, 2000), p. 64.

    Google Scholar 

  51. 51.

    J. W. Truran, J. J. Cowan, and A. G. W. Cameron, Astrophys. J. 22, L63 (1978).

    ADS  Article  Google Scholar 

  52. 52.

    A. A. Vorob’ev, I. T. Grachev, I. A. Kondurov, et al., Fiz. Élem. Chastits At. Yadra 26, 939 (1972).

    Google Scholar 

  53. 53.

    G. J. Wasserburg, M. Busso, and R. Gallino, Astrophys. J. 466, L109 (1996).

    ADS  Article  Google Scholar 

  54. 54.

    J. Witti, H.-Th. Janka, K. Takahashi, and W. Hillebrandt, Nuclei in the Cosmos Ed. by F. Käppeler, K. Wisshak (Inst. of Phys. Publ., Bristol, 1993), p. 601.

    Google Scholar 

  55. 55.

    S. E. Woosley, J. R. Wilson, G. J. Mathews, et al., Astrophys. J. 433, 229 (1994).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. V. Panov.

Additional information

Original Russian Text © I.V. Panov, I.Yu. Korneev, F.-K. Thielemann, 2008, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2008, Vol. 34, No. 3, pp. 213–221.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Panov, I.V., Korneev, I.Y. & Thielemann, F.-. The r-Process in the region of transuranium elements and the contribution of fission products to the nucleosynthesis of nuclei with A ≤ 130. Astron. Lett. 34, 189–197 (2008). https://doi.org/10.1134/S1063773708030067

Download citation

PACS numbers

  • 26.30.+k
  • 97.60.Bw
  • 97.60.Jd
  • 26.50.tx

Key words

  • nuclear astrophysics, nucleosynthesis
  • supernovae and supernova remnants
  • nuclear reactions, β-decay and fission