Skip to main content
Log in

On the variability of afterglows from cosmic gamma-ray bursts—the possibility of a transition to a nonrelativistic motion

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Variability on time scales δt < t is observed on numerous occasions in the afterglows of cosmic gamma-ray bursts (GRBs). It is well known that the radiation originating in an external shock produced by the interaction of an ultrarelativistic jet with the ambient interstellar medium should not contain such variability within the framework of simple models. The corresponding constraints were established by Ioka et al. (2005) and, in some instances, are inconsistent with observations. On the other hand, if the motion is not relativistic, then the rapid afterglow variability can be explained much more easily. Various estimates of the transition time to a nonrelativistic motion in a GRB source are discussed in this connection. It has been shown that this transition should occur on an observed time scale of ∼10 days. In the case of a higher density of the surrounding material, ∼102−104 cm−3, or a stellar wind with ∼ 10−5−10−4 M yr−1, the transition to a nonrelativistic motion can occur on a time scale of ∼1 day. Such densities may well be expected in star-forming regions and around massive Wolf-Rayet stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bersier, K. Z. Stanek, J. N. Winn, et al., Astrophys. J. 584, L43 (2003).

    Article  ADS  Google Scholar 

  2. R. A. Burenin, R. A. Sunyaev, M. N. Pavlinsky, et al., Pis’ma Astron. Zh. 29, 649 (2003) [Astron. Lett. 29, 573 (2003)].

    Google Scholar 

  3. P. A. Crowther, Ann. Rev. Astron. Astrophys. (2007) (in press); astro-ph/0610356.

  4. Z. G. Dai and T. Lu, Astrophys. J. 519, L155 (1999).

    Article  ADS  Google Scholar 

  5. X. Dai, J. P. Halpern, N. D. Morgan, et al., Astrophys. J. 658, 509 (2007).

    Article  ADS  Google Scholar 

  6. W.-R. Hamann and L. Koesterke, Astron. Astrophys. 335, 1003 (1998).

    ADS  Google Scholar 

  7. S. T. Holland, M. Weidinger, J. P. U. Fynbo, et al., Astron. J. 125, 2291 (2003).

    Article  ADS  Google Scholar 

  8. K. Ioka, S. Kobayashi, and B. Zhang, Astrophys. J. 631, 429 (2005).

    Article  ADS  Google Scholar 

  9. I. M. Khamitov, R. A. Burenin, I. F. Bikmaev, et al., Pis’ma Astron. Zh. 33, 891 (2007) [Astron. Lett. 33, 797 (2007)].

    Google Scholar 

  10. D. Lazzati, R. Perna, J. Flasher, et al., Mon. Not. R. Astron. Soc. 372, 1791 (2006).

    Article  ADS  Google Scholar 

  11. Y. M. Lipkin, E.O. Ofek, A. Gal-Yam, et al., Astrophys. J. 606, 381 (2004).

    Article  ADS  Google Scholar 

  12. M. Livio and E. Waxman, Astrophys. J. 538, 187 (2000).

    Article  ADS  Google Scholar 

  13. P. Mészáros, Ann. Rev. Astron. Astrophys. 40, 137 (2002).

    Article  Google Scholar 

  14. N. Mirabal, J.P. Halpern, R. Chornock, et al., Astrophys. J. 595, 935 (2003).

    Article  ADS  Google Scholar 

  15. A. Panaitescu and P. Mészáros, Astrophys. J. 526, 707 (1999).

    Article  ADS  Google Scholar 

  16. T. Piran, Rev. Mod. Phys. 76, 1143 (2005).

    Article  ADS  Google Scholar 

  17. J. E. Rhoads, Astrophys. J. 487, L1 (1997).

    Article  ADS  Google Scholar 

  18. J. E. Rhoads, Astrophys. J. 525, 737 (1999).

    Article  ADS  Google Scholar 

  19. R. Sari, T. Piran, and R. Narayan, Astrophys. J. 497, L17 (1998).

    Article  ADS  Google Scholar 

  20. R. Sari, T. Piran, and J. P. Halpern, Astrophys. J. 519, L17 (1999).

    Article  ADS  Google Scholar 

  21. A. de Ugarte Postigo, A. J. Castro-Tirado, J. Gorosabel, et al., Astron. Astrophys. 443, 841 (2005).

    Article  ADS  Google Scholar 

  22. A. de Ugarte Postigo, T. A. Fatkhullin, G. Jóhannesson, et al., Astron. Astrophys. 462, L57 (2007).

    Article  ADS  Google Scholar 

  23. Y. Urata, T. Miyata, S. Nishiura, et al., Astrophys. J. 601, L17 (2004).

    Article  ADS  Google Scholar 

  24. E. Waxman, S. R. Kulkarni, and D. A. Frail, Astrophys. J. 497, 288 (1998).

    Article  ADS  Google Scholar 

  25. S. E. Woosley and J. S. Bloom, Ann. Rev. Astron. Astrophys. 44, 507 (2006).

    Article  ADS  Google Scholar 

  26. B. Zhang and P. Mészáros, Int. J. Mod. Phys. A 19, 2385 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Burenin.

Additional information

Original Russian Text © R.A. Burenin, 2007, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2007, Vol. 33, No. 12, pp. 899–902.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burenin, R.A. On the variability of afterglows from cosmic gamma-ray bursts—the possibility of a transition to a nonrelativistic motion. Astron. Lett. 33, 804–806 (2007). https://doi.org/10.1134/S1063773707120031

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773707120031

PACS numbers

Key words

Navigation